机械类外文翻译之-英文-清亮级丝杠作动器设计在便携的机器人的应用.doc

机械类翻译带CAD图

收藏

资源目录
跳过导航链接。
机械类翻译带CAD图.zip
翻译[含CAD图纸和文档资料]
说明举例.doc---(点击预览)
翻译
赵启兵-论文翻译_doc_2.png---(点击预览)
赵启兵-论文翻译_doc_1.png---(点击预览)
赵启兵-论文翻译_doc_0.png---(点击预览)
赵启兵-论文翻译_doc.txt---(点击预览)
赵启兵-论文翻译.doc---(点击预览)
赵启兵-外文翻译_doc_2.png---(点击预览)
赵启兵-外文翻译_doc_1.png---(点击预览)
赵启兵-外文翻译_doc_0.png---(点击预览)
赵启兵-外文翻译_doc.txt---(点击预览)
赵启兵-外文翻译.doc---(点击预览)
说明书摘要外文翻译###_doc_2.png---(点击预览)
说明书摘要外文翻译###_doc_1.png---(点击预览)
说明书摘要外文翻译###_doc_0.png---(点击预览)
说明书摘要外文翻译###_doc.txt---(点击预览)
说明书摘要外文翻译###.doc---(点击预览)
袁航英文翻译_doc_2.png---(点击预览)
袁航英文翻译_doc_1.png---(点击预览)
袁航英文翻译_doc_0.png---(点击预览)
袁航英文翻译_doc.txt---(点击预览)
袁航英文翻译.doc---(点击预览)
英语翻译_doc_2.png---(点击预览)
英语翻译_doc_1.png---(点击预览)
英语翻译_doc_0.png---(点击预览)
英语翻译_doc.txt---(点击预览)
英语翻译.doc---(点击预览)
英文翻译封面_doc_0.png---(点击预览)
英文翻译封面_doc.txt---(点击预览)
英文翻译封面.doc---(点击预览)
英文翻译—于亮亮2007_doc_2.png---(点击预览)
英文翻译—于亮亮2007_doc_1.png---(点击预览)
英文翻译—于亮亮2007_doc_0.png---(点击预览)
英文翻译—于亮亮2007_doc.txt---(点击预览)
英文翻译—于亮亮2007.doc---(点击预览)
英文翻译_doc_2.png---(点击预览)
英文翻译_doc_1.png---(点击预览)
英文翻译_doc_0.png---(点击预览)
英文翻译_doc.txt---(点击预览)
英文翻译1_doc_2.png---(点击预览)
英文翻译1_doc_1.png---(点击预览)
英文翻译1_doc_0.png---(点击预览)
英文翻译1_doc.txt---(点击预览)
英文翻译1.doc---(点击预览)
英文翻译.doc---(点击预览)
英文翻译-风力发电中的自我激励与谐波_doc_2.png---(点击预览)
英文翻译-风力发电中的自我激励与谐波_doc_1.png---(点击预览)
英文翻译-风力发电中的自我激励与谐波_doc_0.png---(点击预览)
英文翻译-风力发电中的自我激励与谐波_doc.txt---(点击预览)
英文翻译-风力发电中的自我激励与谐波.doc---(点击预览)
英文与翻译_doc_2.png---(点击预览)
英文与翻译_doc_1.png---(点击预览)
英文与翻译_doc_0.png---(点击预览)
英文与翻译_doc.txt---(点击预览)
英文与翻译.doc---(点击预览)
胡发振 毕设英文翻译_doc_2.png---(点击预览)
胡发振 毕设英文翻译_doc_1.png---(点击预览)
胡发振 毕设英文翻译_doc_0.png---(点击预览)
胡发振 毕设英文翻译_doc.txt---(点击预览)
胡发振 毕设英文翻译.doc---(点击预览)
翻译稿_doc_2.png---(点击预览)
翻译稿_doc_1.png---(点击预览)
翻译稿_doc_0.png---(点击预览)
翻译稿_doc.txt---(点击预览)
翻译稿.doc---(点击预览)
翻译稿+格式_doc_2.png---(点击预览)
翻译稿+格式_doc_1.png---(点击预览)
翻译稿+格式_doc_0.png---(点击预览)
翻译稿+格式_doc.txt---(点击预览)
翻译稿+格式.doc---(点击预览)
翻译最终版_doc_2.png---(点击预览)
翻译最终版_doc_1.png---(点击预览)
翻译最终版_doc_0.png---(点击预览)
翻译最终版_doc.txt---(点击预览)
翻译最终版.doc---(点击预览)
翻译打印_doc_2.png---(点击预览)
翻译打印_doc_1.png---(点击预览)
翻译打印_doc_0.png---(点击预览)
翻译打印_doc.txt---(点击预览)
翻译打印.doc---(点击预览)
翻译封面_doc_0.png---(点击预览)
翻译封面_doc.txt---(点击预览)
翻译封面.doc---(点击预览)
翻译基于构架构件复用的开放式数控系统研究_doc_2.png---(点击预览)
翻译基于构架构件复用的开放式数控系统研究_doc_1.png---(点击预览)
翻译基于构架构件复用的开放式数控系统研究_doc_0.png---(点击预览)
翻译基于构架构件复用的开放式数控系统研究_doc.txt---(点击预览)
翻译基于构架构件复用的开放式数控系统研究.doc---(点击预览)
翻译和原文_doc_2.png---(点击预览)
翻译和原文_doc_1.png---(点击预览)
翻译和原文_doc_0.png---(点击预览)
翻译和原文_doc.txt---(点击预览)
翻译和原文.doc---(点击预览)
翻译后作业_doc_2.png---(点击预览)
翻译后作业_doc_1.png---(点击预览)
翻译后作业_doc_0.png---(点击预览)
翻译后作业_doc.txt---(点击预览)
翻译后作业.doc---(点击预览)
翻译原文打印_pdf.txt---(点击预览)
翻译原文打印_pdf.png---(点击预览)
翻译原文打印.pdf---(点击预览)
翻译原文_pdf.txt---(点击预览)
翻译原文_pdf.png---(点击预览)
翻译原文_doc_2.png---(点击预览)
翻译原文_doc_1.png---(点击预览)
翻译原文_doc_0.png---(点击预览)
翻译原文_doc.txt---(点击预览)
翻译原文_Analysis and optimization of a polyurethane reaction injection_pdf.txt---(点击预览)
翻译原文_Analysis and optimization of a polyurethane reaction injection_pdf.png---(点击预览)
翻译原文_Analysis and optimization of a polyurethane reaction injection.pdf---(点击预览)
翻译原文.pdf---(点击预览)
翻译原文.doc---(点击预览)
翻译中文_doc_2.png---(点击预览)
翻译中文_doc_1.png---(点击预览)
翻译中文_doc_0.png---(点击预览)
翻译中文_doc.txt---(点击预览)
翻译中文.doc---(点击预览)
翻译_doc_2.png---(点击预览)
翻译_doc_1.png---(点击预览)
翻译_doc_0.png---(点击预览)
翻译_doc.txt---(点击预览)
翻译.doc---(点击预览)
王昊天说明书外文翻译_doc_1.png---(点击预览)
王昊天说明书外文翻译_doc_0.png---(点击预览)
王昊天说明书外文翻译_doc.txt---(点击预览)
王昊天说明书外文翻译.doc---(点击预览)
王昊天外文翻译_doc_2.png---(点击预览)
王昊天外文翻译_doc_1.png---(点击预览)
王昊天外文翻译_doc_0.png---(点击预览)
王昊天外文翻译_doc.txt---(点击预览)
王昊天外文翻译.doc---(点击预览)
毕设翻译原文5_doc_2.png---(点击预览)
毕设翻译原文5_doc_1.png---(点击预览)
毕设翻译原文5_doc_0.png---(点击预览)
毕设翻译原文5_doc.txt---(点击预览)
毕设翻译原文5.doc---(点击预览)
毕业设计外文翻译-周海涛 2008_doc_2.png---(点击预览)
毕业设计外文翻译-周海涛 2008_doc_1.png---(点击预览)
毕业设计外文翻译-周海涛 2008_doc_0.png---(点击预览)
毕业设计外文翻译-周海涛 2008_doc.txt---(点击预览)
毕业设计外文翻译-周海涛 2008.doc---(点击预览)
毕业翻译_doc_1.png---(点击预览)
毕业翻译_doc_0.png---(点击预览)
毕业翻译_doc.txt---(点击预览)
毕业翻译4_doc_2.png---(点击预览)
毕业翻译4_doc_1.png---(点击预览)
毕业翻译4_doc_0.png---(点击预览)
毕业翻译4_doc.txt---(点击预览)
毕业翻译4.doc---(点击预览)
毕业翻译.doc---(点击预览)
机械类外文翻译之-英文-清亮级丝杠作动器设计在便携的机器人的应用_doc_2.png---(点击预览)
机械类外文翻译之-英文-清亮级丝杠作动器设计在便携的机器人的应用_doc_1.png---(点击预览)
机械类外文翻译之-英文-清亮级丝杠作动器设计在便携的机器人的应用_doc_0.png---(点击预览)
机械类外文翻译之-英文-清亮级丝杠作动器设计在便携的机器人的应用_doc.txt---(点击预览)
机械类外文翻译之-英文-清亮级丝杠作动器设计在便携的机器人的应用.doc---(点击预览)
机械类外文翻译之-浅析机电一体化技术的现状和发展趋势_doc_2.png---(点击预览)
机械类外文翻译之-浅析机电一体化技术的现状和发展趋势_doc_1.png---(点击预览)
机械类外文翻译之-浅析机电一体化技术的现状和发展趋势_doc_0.png---(点击预览)
机械类外文翻译之-浅析机电一体化技术的现状和发展趋势_doc.txt---(点击预览)
机械类外文翻译之-浅析机电一体化技术的现状和发展趋势.doc---(点击预览)
机械类外文翻译之-数控技术_doc_2.png---(点击预览)
机械类外文翻译之-数控技术_doc_1.png---(点击预览)
机械类外文翻译之-数控技术_doc_0.png---(点击预览)
机械类外文翻译之-数控技术_doc.txt---(点击预览)
机械类外文翻译之-数控技术.doc---(点击预览)
机械类外文翻译之-平面度测量_doc_2.png---(点击预览)
机械类外文翻译之-平面度测量_doc_1.png---(点击预览)
机械类外文翻译之-平面度测量_doc_0.png---(点击预览)
机械类外文翻译之-平面度测量_doc.txt---(点击预览)
机械类外文翻译之-平面度测量.doc---(点击预览)
机械类外文翻译之-信息资源在汽车维修业中的应用_doc_2.png---(点击预览)
机械类外文翻译之-信息资源在汽车维修业中的应用_doc_1.png---(点击预览)
机械类外文翻译之-信息资源在汽车维修业中的应用_doc_0.png---(点击预览)
机械类外文翻译之-信息资源在汽车维修业中的应用_doc.txt---(点击预览)
机械类外文翻译之-信息资源在汽车维修业中的应用.doc---(点击预览)
机械类外文翻译之-中文-清亮级丝杠作动器设计在便携的机器人的应用_doc_2.png---(点击预览)
机械类外文翻译之-中文-清亮级丝杠作动器设计在便携的机器人的应用_doc_1.png---(点击预览)
机械类外文翻译之-中文-清亮级丝杠作动器设计在便携的机器人的应用_doc_0.png---(点击预览)
机械类外文翻译之-中文-清亮级丝杠作动器设计在便携的机器人的应用_doc.txt---(点击预览)
机械类外文翻译之-中文-清亮级丝杠作动器设计在便携的机器人的应用.doc---(点击预览)
机械类外文翻译-数控技术和装备发展趋势及对策_doc_2.png---(点击预览)
机械类外文翻译-数控技术和装备发展趋势及对策_doc_1.png---(点击预览)
机械类外文翻译-数控技术和装备发展趋势及对策_doc_0.png---(点击预览)
机械类外文翻译-数控技术和装备发展趋势及对策_doc.txt---(点击预览)
机械类外文翻译-数控技术和装备发展趋势及对策.doc---(点击预览)
机械毕业论文外文翻译之-如何延长轴承寿命_doc_2.png---(点击预览)
机械毕业论文外文翻译之-如何延长轴承寿命_doc_1.png---(点击预览)
机械毕业论文外文翻译之-如何延长轴承寿命_doc_0.png---(点击预览)
机械毕业论文外文翻译之-如何延长轴承寿命_doc.txt---(点击预览)
机械毕业论文外文翻译之-如何延长轴承寿命.doc---(点击预览)
机械毕业论文外文翻译之--机电一体化全自动横切机_doc_2.png---(点击预览)
机械毕业论文外文翻译之--机电一体化全自动横切机_doc_1.png---(点击预览)
机械毕业论文外文翻译之--机电一体化全自动横切机_doc_0.png---(点击预览)
机械毕业论文外文翻译之--机电一体化全自动横切机_doc.txt---(点击预览)
机械毕业论文外文翻译之--机电一体化全自动横切机.doc---(点击预览)
战勇外文翻译_doc_2.png---(点击预览)
战勇外文翻译_doc_1.png---(点击预览)
战勇外文翻译_doc_0.png---(点击预览)
战勇外文翻译_doc.txt---(点击预览)
战勇外文翻译.doc---(点击预览)
我的专业英语翻译原文_pdf.txt---(点击预览)
我的专业英语翻译原文_pdf.png---(点击预览)
我的专业英语翻译原文.pdf---(点击预览)
外语文献翻译_doc_2.png---(点击预览)
外语文献翻译_doc_1.png---(点击预览)
外语文献翻译_doc_0.png---(点击预览)
外语文献翻译_doc.txt---(点击预览)
外语文献翻译.doc---(点击预览)
外文资料翻译_doc_2.png---(点击预览)
外文资料翻译_doc_1.png---(点击预览)
外文资料翻译_doc_0.png---(点击预览)
外文资料翻译_doc.txt---(点击预览)
外文资料翻译.doc---(点击预览)
外文翻译抗侧向荷载的结构体系_doc_2.png---(点击预览)
外文翻译抗侧向荷载的结构体系_doc_1.png---(点击预览)
外文翻译抗侧向荷载的结构体系_doc_0.png---(点击预览)
外文翻译抗侧向荷载的结构体系_doc.txt---(点击预览)
外文翻译抗侧向荷载的结构体系.doc---(点击预览)
外文翻译封面-杨闻达2006_doc_0.png---(点击预览)
外文翻译封面-杨闻达2006_doc.txt---(点击预览)
外文翻译封面-杨闻达2006.doc---(点击预览)
外文翻译一页_doc_0.png---(点击预览)
外文翻译一页_doc.txt---(点击预览)
外文翻译一页.doc---(点击预览)
外文翻译—闻志祥2006_doc_2.png---(点击预览)
外文翻译—闻志祥2006_doc_1.png---(点击预览)
外文翻译—闻志祥2006_doc_0.png---(点击预览)
外文翻译—闻志祥2006_doc.txt---(点击预览)
外文翻译—闻志祥2006.doc---(点击预览)
外文翻译—毛杰 2006_doc_2.png---(点击预览)
外文翻译—毛杰 2006_doc_1.png---(点击预览)
外文翻译—毛杰 2006_doc_0.png---(点击预览)
外文翻译—毛杰 2006_doc.txt---(点击预览)
外文翻译—毛杰 2006.doc---(点击预览)
外文翻译_doc_2.png---(点击预览)
外文翻译_doc_1.png---(点击预览)
外文翻译_doc_0.png---(点击预览)
外文翻译_doc.txt---(点击预览)
外文翻译.doc---(点击预览)
外文翻译-杨闻达2006_doc_2.png---(点击预览)
外文翻译-杨闻达2006_doc_1.png---(点击预览)
外文翻译-杨闻达2006_doc_0.png---(点击预览)
外文翻译-杨闻达2006_doc.txt---(点击预览)
外文翻译-杨闻达2006.doc---(点击预览)
外文翻译-唐佳红 2007_doc_2.png---(点击预览)
外文翻译-唐佳红 2007_doc_1.png---(点击预览)
外文翻译-唐佳红 2007_doc_0.png---(点击预览)
外文翻译-唐佳红 2007_doc.txt---(点击预览)
外文翻译-唐佳红 2007.doc---(点击预览)
外文翻译-制造工程与技术_doc_2.png---(点击预览)
外文翻译-制造工程与技术_doc_1.png---(点击预览)
外文翻译-制造工程与技术_doc_0.png---(点击预览)
外文翻译-制造工程与技术_doc.txt---(点击预览)
外文翻译-制造工程与技术.doc---(点击预览)
外文翻译 高速切削加工的发展及需求_doc_2.png---(点击预览)
外文翻译 高速切削加工的发展及需求_doc_1.png---(点击预览)
外文翻译 高速切削加工的发展及需求_doc_0.png---(点击预览)
外文翻译 高速切削加工的发展及需求_doc.txt---(点击预览)
外文翻译 高速切削加工的发展及需求.doc---(点击预览)
外文翻译 铣削_doc_2.png---(点击预览)
外文翻译 铣削_doc_1.png---(点击预览)
外文翻译 铣削_doc_0.png---(点击预览)
外文翻译 铣削_doc.txt---(点击预览)
外文翻译 铣削.doc---(点击预览)
外文翻译 车床、数控控制、切削_doc_2.png---(点击预览)
外文翻译 车床、数控控制、切削_doc_1.png---(点击预览)
外文翻译 车床、数控控制、切削_doc_0.png---(点击预览)
外文翻译 车床、数控控制、切削_doc.txt---(点击预览)
外文翻译 车床、数控控制、切削.doc---(点击预览)
外文翻译 车床_doc_2.png---(点击预览)
外文翻译 车床_doc_1.png---(点击预览)
外文翻译 车床_doc_0.png---(点击预览)
外文翻译 车床_doc.txt---(点击预览)
外文翻译 车床.doc---(点击预览)
外文翻译 计算机辅助编制工艺规程_doc_2.png---(点击预览)
外文翻译 计算机辅助编制工艺规程_doc_1.png---(点击预览)
外文翻译 计算机辅助编制工艺规程_doc_0.png---(点击预览)
外文翻译 计算机辅助编制工艺规程_doc.txt---(点击预览)
外文翻译 计算机辅助编制工艺规程.doc---(点击预览)
外文翻译 机械设计理论_doc_2.png---(点击预览)
外文翻译 机械设计理论_doc_1.png---(点击预览)
外文翻译 机械设计理论_doc_0.png---(点击预览)
外文翻译 机械设计理论_doc.txt---(点击预览)
外文翻译 机械设计理论.doc---(点击预览)
外文翻译 机0405-02张晓寅_doc_2.png---(点击预览)
外文翻译 机0405-02张晓寅_doc_1.png---(点击预览)
外文翻译 机0405-02张晓寅_doc_0.png---(点击预览)
外文翻译 机0405-02张晓寅_doc.txt---(点击预览)
外文翻译 机0405-02张晓寅.doc---(点击预览)
外文翻译 数控技术_doc_2.png---(点击预览)
外文翻译 数控技术_doc_1.png---(点击预览)
外文翻译 数控技术_doc_0.png---(点击预览)
外文翻译 数控技术_doc.txt---(点击预览)
外文翻译 数控技术.doc---(点击预览)
外文翻译 加工基础_doc_2.png---(点击预览)
外文翻译 加工基础_doc_1.png---(点击预览)
外文翻译 加工基础_doc_0.png---(点击预览)
外文翻译 加工基础_doc.txt---(点击预览)
外文翻译 加工基础.doc---(点击预览)
外文翻译 切削成型_doc_2.png---(点击预览)
外文翻译 切削成型_doc_1.png---(点击预览)
外文翻译 切削成型_doc_0.png---(点击预览)
外文翻译 切削成型_doc.txt---(点击预览)
外文翻译 切削成型.doc---(点击预览)
外文翻译 CAD概论_doc_2.png---(点击预览)
外文翻译 CAD概论_doc_1.png---(点击预览)
外文翻译 CAD概论_doc_0.png---(点击预览)
外文翻译 CAD概论_doc.txt---(点击预览)
外文翻译 CAD概论.doc---(点击预览)
唐伟外文翻译_doc_2.png---(点击预览)
唐伟外文翻译_doc_1.png---(点击预览)
唐伟外文翻译_doc_0.png---(点击预览)
唐伟外文翻译_doc.txt---(点击预览)
唐伟外文翻译.doc---(点击预览)
周璐翻译_doc_2.png---(点击预览)
周璐翻译_doc_1.png---(点击预览)
周璐翻译_doc_0.png---(点击预览)
周璐翻译_doc.txt---(点击预览)
周璐翻译.doc---(点击预览)
可机加工性-外语文献翻译_doc_2.png---(点击预览)
可机加工性-外语文献翻译_doc_1.png---(点击预览)
可机加工性-外语文献翻译_doc_0.png---(点击预览)
可机加工性-外语文献翻译_doc.txt---(点击预览)
可机加工性-外语文献翻译.doc---(点击预览)
中英文翻译锂电池充电器的设计_doc_2.png---(点击预览)
中英文翻译锂电池充电器的设计_doc_1.png---(点击预览)
中英文翻译锂电池充电器的设计_doc_0.png---(点击预览)
中英文翻译锂电池充电器的设计_doc.txt---(点击预览)
中英文翻译锂电池充电器的设计.doc---(点击预览)
中英文翻译_doc_2.png---(点击预览)
中英文翻译_doc_1.png---(点击预览)
中英文翻译_doc_0.png---(点击预览)
中英文翻译_doc.txt---(点击预览)
中英文翻译.doc---(点击预览)
中英文翻译 新一代工业控制系统, 可编程自动化控制发展的未来_doc_2.png---(点击预览)
中英文翻译 新一代工业控制系统, 可编程自动化控制发展的未来_doc_1.png---(点击预览)
中英文翻译 新一代工业控制系统, 可编程自动化控制发展的未来_doc_0.png---(点击预览)
中英文翻译 新一代工业控制系统, 可编程自动化控制发展的未来_doc.txt---(点击预览)
中英文翻译 新一代工业控制系统, 可编程自动化控制发展的未来.doc---(点击预览)
中文翻译_doc_2.png---(点击预览)
中文翻译_doc_1.png---(点击预览)
中文翻译_doc_0.png---(点击预览)
中文翻译_doc.txt---(点击预览)
中文翻译.doc---(点击预览)
CAD图.gif---(点击预览)
中英文翻译
外文翻译
英文_doc_2.png---(点击预览)
英文_doc_1.png---(点击预览)
英文_doc_0.png---(点击预览)
英文_doc.txt---(点击预览)
英文.doc---(点击预览)
注射模设计文献综述_doc_2.png---(点击预览)
注射模设计文献综述_doc_1.png---(点击预览)
注射模设计文献综述_doc_0.png---(点击预览)
注射模设计文献综述_doc.txt---(点击预览)
注射模设计文献综述.doc---(点击预览)
数控技术中英文对照_doc_2.png---(点击预览)
数控技术中英文对照_doc_1.png---(点击预览)
数控技术中英文对照_doc_0.png---(点击预览)
数控技术中英文对照_doc.txt---(点击预览)
数控技术中英文对照.DOC---(点击预览)
冷冲压模设计文献综述_doc_2.png---(点击预览)
冷冲压模设计文献综述_doc_1.png---(点击预览)
冷冲压模设计文献综述_doc_0.png---(点击预览)
冷冲压模设计文献综述_doc.txt---(点击预览)
冷冲压模设计文献综述.doc---(点击预览)
中英文对照_doc_2.png---(点击预览)
中英文对照_doc_1.png---(点击预览)
中英文对照_doc_0.png---(点击预览)
中英文对照_doc.txt---(点击预览)
中英文对照.DOC---(点击预览)
中英文如何延长轴承寿命_doc_2.png---(点击预览)
中英文如何延长轴承寿命_doc_1.png---(点击预览)
中英文如何延长轴承寿命_doc_0.png---(点击预览)
中英文如何延长轴承寿命_doc.txt---(点击预览)
中英文如何延长轴承寿命.doc---(点击预览)
中英文_doc_2.png---(点击预览)
中英文_doc_1.png---(点击预览)
中英文_doc_0.png---(点击预览)
中英文_doc.txt---(点击预览)
中英文.doc---(点击预览)
中文_doc_2.png---(点击预览)
中文_doc_1.png---(点击预览)
中文_doc_0.png---(点击预览)
中文_doc.txt---(点击预览)
中文.doc---(点击预览)
任务书-机体 .zip
外文翻译-周海涛 2008
外文翻译-杨闻达2006
外文翻译—毛杰 2006
王汉翻译
翻译
齿 轮_doc_2.png---(点击预览)
齿 轮_doc_1.png---(点击预览)
齿 轮_doc_0.png---(点击预览)
齿 轮_doc.txt---(点击预览)
齿 轮.doc---(点击预览)
车床变速箱中拔叉及专用夹具设计_doc_2.png---(点击预览)
车床变速箱中拔叉及专用夹具设计_doc_1.png---(点击预览)
车床变速箱中拔叉及专用夹具设计_doc_0.png---(点击预览)
车床变速箱中拔叉及专用夹具设计_doc.txt---(点击预览)
车床变速箱中拔叉及专用夹具设计.doc---(点击预览)
车床、数控控制、切削_doc_2.png---(点击预览)
车床、数控控制、切削_doc_1.png---(点击预览)
车床、数控控制、切削_doc_0.png---(点击预览)
车床、数控控制、切削_doc.txt---(点击预览)
车床、数控控制、切削.doc---(点击预览)
计算机辅助制造英文原文_doc_2.png---(点击预览)
计算机辅助制造英文原文_doc_1.png---(点击预览)
计算机辅助制造英文原文_doc_0.png---(点击预览)
计算机辅助制造英文原文_doc.txt---(点击预览)
计算机辅助制造英文原文.doc---(点击预览)
计算机辅助制造_doc_2.png---(点击预览)
计算机辅助制造_doc_1.png---(点击预览)
计算机辅助制造_doc_0.png---(点击预览)
计算机辅助制造_doc.txt---(点击预览)
计算机辅助制造.doc---(点击预览)
虚拟制造技术及其应用_doc_2.png---(点击预览)
虚拟制造技术及其应用_doc_1.png---(点击预览)
虚拟制造技术及其应用_doc_0.png---(点击预览)
虚拟制造技术及其应用_doc.txt---(点击预览)
虚拟制造技术及其应用.doc---(点击预览)
英文_doc_2.png---(点击预览)
英文_doc_1.png---(点击预览)
英文_doc_0.png---(点击预览)
英文_doc.txt---(点击预览)
英文.doc---(点击预览)
自动洗衣机行星齿轮减速器的设计_doc_2.png---(点击预览)
自动洗衣机行星齿轮减速器的设计_doc_1.png---(点击预览)
自动洗衣机行星齿轮减速器的设计_doc_0.png---(点击预览)
自动洗衣机行星齿轮减速器的设计_doc.txt---(点击预览)
自动洗衣机行星齿轮减速器的设计.doc---(点击预览)
笔盖的模具设计_doc_2.png---(点击预览)
笔盖的模具设计_doc_1.png---(点击预览)
笔盖的模具设计_doc_0.png---(点击预览)
笔盖的模具设计_doc.txt---(点击预览)
笔盖的模具设计.doc---(点击预览)
电视信号_doc_2.png---(点击预览)
电视信号_doc_1.png---(点击预览)
电视信号_doc_0.png---(点击预览)
电视信号_doc.txt---(点击预览)
电视信号.doc---(点击预览)
电动跑步机行业呼唤中国名牌_doc_2.png---(点击预览)
电动跑步机行业呼唤中国名牌_doc_1.png---(点击预览)
电动跑步机行业呼唤中国名牌_doc_0.png---(点击预览)
电动跑步机行业呼唤中国名牌_doc.txt---(点击预览)
电动跑步机行业呼唤中国名牌.doc---(点击预览)
滚筒式抛丸清理机的设计_doc_2.png---(点击预览)
滚筒式抛丸清理机的设计_doc_1.png---(点击预览)
滚筒式抛丸清理机的设计_doc_0.png---(点击预览)
滚筒式抛丸清理机的设计_doc.txt---(点击预览)
滚筒式抛丸清理机的设计.doc---(点击预览)
水平定向钻机孔底钻具的研究与应用_doc_2.png---(点击预览)
水平定向钻机孔底钻具的研究与应用_doc_1.png---(点击预览)
水平定向钻机孔底钻具的研究与应用_doc_0.png---(点击预览)
水平定向钻机孔底钻具的研究与应用_doc.txt---(点击预览)
水平定向钻机孔底钻具的研究与应用.doc---(点击预览)
模具高速铣削加工技术_doc_2.png---(点击预览)
模具高速铣削加工技术_doc_1.png---(点击预览)
模具高速铣削加工技术_doc_0.png---(点击预览)
模具高速铣削加工技术_doc.txt---(点击预览)
模具高速铣削加工技术.doc---(点击预览)
柴油机齿轮室盖钻镗专机总体及夹具设计_doc_2.png---(点击预览)
柴油机齿轮室盖钻镗专机总体及夹具设计_doc_1.png---(点击预览)
柴油机齿轮室盖钻镗专机总体及夹具设计_doc_0.png---(点击预览)
柴油机齿轮室盖钻镗专机总体及夹具设计_doc.txt---(点击预览)
柴油机齿轮室盖钻镗专机总体及夹具设计.doc---(点击预览)
数控系统在平面磨床上应用现状与发展趋势_doc_2.png---(点击预览)
数控系统在平面磨床上应用现状与发展趋势_doc_1.png---(点击预览)
数控系统在平面磨床上应用现状与发展趋势_doc_0.png---(点击预览)
数控系统在平面磨床上应用现状与发展趋势_doc.txt---(点击预览)
数控系统在平面磨床上应用现状与发展趋势.doc---(点击预览)
数控激光切割机XY工作台部件及单片机控制设计_doc_2.png---(点击预览)
数控激光切割机XY工作台部件及单片机控制设计_doc_1.png---(点击预览)
数控激光切割机XY工作台部件及单片机控制设计_doc_0.png---(点击预览)
数控激光切割机XY工作台部件及单片机控制设计_doc.txt---(点击预览)
数控激光切割机XY工作台部件及单片机控制设计.doc---(点击预览)
数控技术和装备发展趋势及对策_doc_2.png---(点击预览)
数控技术和装备发展趋势及对策_doc_1.png---(点击预览)
数控技术和装备发展趋势及对策_doc_0.png---(点击预览)
数控技术和装备发展趋势及对策_doc.txt---(点击预览)
数控技术和装备发展趋势及对策.doc---(点击预览)
数控技术中英文对照_doc_2.png---(点击预览)
数控技术中英文对照_doc_1.png---(点击预览)
数控技术中英文对照_doc_0.png---(点击预览)
数控技术中英文对照_doc.txt---(点击预览)
数控技术中英文对照.DOC---(点击预览)
常规压力对采用非牛顿学流体润滑的光滑碟片_doc_2.png---(点击预览)
常规压力对采用非牛顿学流体润滑的光滑碟片_doc_1.png---(点击预览)
常规压力对采用非牛顿学流体润滑的光滑碟片_doc_0.png---(点击预览)
常规压力对采用非牛顿学流体润滑的光滑碟片_doc.txt---(点击预览)
常规压力对采用非牛顿学流体润滑的光滑碟片.doc---(点击预览)
工装夹具的基本类型和功能_doc_2.png---(点击预览)
工装夹具的基本类型和功能_doc_1.png---(点击预览)
工装夹具的基本类型和功能_doc_0.png---(点击预览)
工装夹具的基本类型和功能_doc.txt---(点击预览)
工装夹具的基本类型和功能.doc---(点击预览)
宽槽圆柱凸轮数控加工技术的研究_doc_2.png---(点击预览)
宽槽圆柱凸轮数控加工技术的研究_doc_1.png---(点击预览)
宽槽圆柱凸轮数控加工技术的研究_doc_0.png---(点击预览)
宽槽圆柱凸轮数控加工技术的研究_doc.txt---(点击预览)
宽槽圆柱凸轮数控加工技术的研究.doc---(点击预览)
实体自由成型制造与快速原型制造英文_doc_2.png---(点击预览)
实体自由成型制造与快速原型制造英文_doc_1.png---(点击预览)
实体自由成型制造与快速原型制造英文_doc_0.png---(点击预览)
实体自由成型制造与快速原型制造英文_doc.txt---(点击预览)
实体自由成型制造与快速原型制造英文.doc---(点击预览)
实体自由成型制造与快速原型制造中文_doc_2.png---(点击预览)
实体自由成型制造与快速原型制造中文_doc_1.png---(点击预览)
实体自由成型制造与快速原型制造中文_doc_0.png---(点击预览)
实体自由成型制造与快速原型制造中文_doc.txt---(点击预览)
实体自由成型制造与快速原型制造中文.doc---(点击预览)
外文-基于机器视觉的水果的识别和定位_pdf.txt---(点击预览)
外文-基于机器视觉的水果的识别和定位_pdf.png---(点击预览)
外文-基于机器视觉的水果的识别和定位.pdf---(点击预览)
基于构架构件复用的开放式数控系统研究原文_doc_2.png---(点击预览)
基于构架构件复用的开放式数控系统研究原文_doc_1.png---(点击预览)
基于构架构件复用的开放式数控系统研究原文_doc_0.png---(点击预览)
基于构架构件复用的开放式数控系统研究原文_doc.txt---(点击预览)
基于构架构件复用的开放式数控系统研究原文.doc---(点击预览)
基于机器视觉的水果的识别和定位_doc_2.png---(点击预览)
基于机器视觉的水果的识别和定位_doc_1.png---(点击预览)
基于机器视觉的水果的识别和定位_doc_0.png---(点击预览)
基于机器视觉的水果的识别和定位_doc.txt---(点击预览)
基于机器视觉的水果的识别和定位.doc---(点击预览)
基于UG的摆线针轮行星减速器的设计_doc_2.png---(点击预览)
基于UG的摆线针轮行星减速器的设计_doc_1.png---(点击预览)
基于UG的摆线针轮行星减速器的设计_doc_0.png---(点击预览)
基于UG的摆线针轮行星减速器的设计_doc.txt---(点击预览)
基于UG的摆线针轮行星减速器的设计.doc---(点击预览)
吸收式制冷_doc_2.png---(点击预览)
吸收式制冷_doc_1.png---(点击预览)
吸收式制冷_doc_0.png---(点击预览)
吸收式制冷_doc.txt---(点击预览)
吸收式制冷ABSORPTION REFRIGERATION_doc_2.png---(点击预览)
吸收式制冷ABSORPTION REFRIGERATION_doc_1.png---(点击预览)
吸收式制冷ABSORPTION REFRIGERATION_doc_0.png---(点击预览)
吸收式制冷ABSORPTION REFRIGERATION_doc.txt---(点击预览)
吸收式制冷ABSORPTION REFRIGERATION.doc---(点击预览)
吸收式制冷.doc---(点击预览)
原文_doc_2.png---(点击预览)
原文_doc_1.png---(点击预览)
原文_doc_0.png---(点击预览)
原文_doc.txt---(点击预览)
原文.doc---(点击预览)
单浇口优化注塑模_doc_2.png---(点击预览)
单浇口优化注塑模_doc_1.png---(点击预览)
单浇口优化注塑模_doc_0.png---(点击预览)
单浇口优化注塑模_doc.txt---(点击预览)
单浇口优化注塑模Single_gate_optimization_for plastic_injection_mold_pdf.txt---(点击预览)
单浇口优化注塑模Single_gate_optimization_for plastic_injection_mold_pdf.png---(点击预览)
单浇口优化注塑模Single_gate_optimization_for plastic_injection_mold.pdf---(点击预览)
单浇口优化注塑模.doc---(点击预览)
乘客电梯的PLC控制_doc_2.png---(点击预览)
乘客电梯的PLC控制_doc_1.png---(点击预览)
乘客电梯的PLC控制_doc_0.png---(点击预览)
乘客电梯的PLC控制_doc.txt---(点击预览)
乘客电梯的PLC控制.doc---(点击预览)
中英对照_doc_2.png---(点击预览)
中英对照_doc_1.png---(点击预览)
中英对照_doc_0.png---(点击预览)
中英对照_doc.txt---(点击预览)
中英对照.doc---(点击预览)
中文_doc_2.png---(点击预览)
中文_doc_1.png---(点击预览)
中文_doc_0.png---(点击预览)
中文_doc.txt---(点击预览)
中文.doc---(点击预览)
中文-基于机器视觉的水果的识别和定位_doc_2.png---(点击预览)
中文-基于机器视觉的水果的识别和定位_doc_1.png---(点击预览)
中文-基于机器视觉的水果的识别和定位_doc_0.png---(点击预览)
中文-基于机器视觉的水果的识别和定位_doc.txt---(点击预览)
中文-基于机器视觉的水果的识别和定位.doc---(点击预览)
Φ3×11M水泥磨总体设计及传动部件设计_doc_2.png---(点击预览)
Φ3×11M水泥磨总体设计及传动部件设计_doc_1.png---(点击预览)
Φ3×11M水泥磨总体设计及传动部件设计_doc_0.png---(点击预览)
Φ3×11M水泥磨总体设计及传动部件设计_doc.txt---(点击预览)
Φ3×11M水泥磨总体设计及传动部件设计.doc---(点击预览)
Φ1200熟料圆锥式破碎机_doc_2.png---(点击预览)
Φ1200熟料圆锥式破碎机_doc_1.png---(点击预览)
Φ1200熟料圆锥式破碎机_doc_0.png---(点击预览)
Φ1200熟料圆锥式破碎机_doc.txt---(点击预览)
Φ1200熟料圆锥式破碎机.doc---(点击预览)
Z形件弯曲模设计_doc_2.png---(点击预览)
Z形件弯曲模设计_doc_1.png---(点击预览)
Z形件弯曲模设计_doc_0.png---(点击预览)
Z形件弯曲模设计_doc.txt---(点击预览)
Z形件弯曲模设计.doc---(点击预览)
Z30130×31型钻床控制系统的PLC改造_doc_2.png---(点击预览)
Z30130×31型钻床控制系统的PLC改造_doc_1.png---(点击预览)
Z30130×31型钻床控制系统的PLC改造_doc_0.png---(点击预览)
Z30130×31型钻床控制系统的PLC改造_doc.txt---(点击预览)
Z30130×31型钻床控制系统的PLC改造.doc---(点击预览)
YQP36预加水盘式成球机设计_doc_2.png---(点击预览)
YQP36预加水盘式成球机设计_doc_1.png---(点击预览)
YQP36预加水盘式成球机设计_doc_0.png---(点击预览)
YQP36预加水盘式成球机设计_doc.txt---(点击预览)
YQP36预加水盘式成球机设计.doc---(点击预览)
X700涡旋式选粉机_doc_2.png---(点击预览)
X700涡旋式选粉机_doc_1.png---(点击预览)
X700涡旋式选粉机_doc_0.png---(点击预览)
X700涡旋式选粉机_doc.txt---(点击预览)
X700涡旋式选粉机.doc---(点击预览)
SF500100打散分级机回转部分及传动设计_doc_2.png---(点击预览)
SF500100打散分级机回转部分及传动设计_doc_1.png---(点击预览)
SF500100打散分级机回转部分及传动设计_doc_0.png---(点击预览)
SF500100打散分级机回转部分及传动设计_doc.txt---(点击预览)
SF500100打散分级机回转部分及传动设计.doc---(点击预览)
SF500100打散分级机内外筒体及原设计改进探讨_doc_2.png---(点击预览)
SF500100打散分级机内外筒体及原设计改进探讨_doc_1.png---(点击预览)
SF500100打散分级机内外筒体及原设计改进探讨_doc_0.png---(点击预览)
SF500100打散分级机内外筒体及原设计改进探讨_doc.txt---(点击预览)
SF500100打散分级机内外筒体及原设计改进探讨.doc---(点击预览)
PF455S插秧机及其侧离合器手柄的探讨和改善设计_doc_2.png---(点击预览)
PF455S插秧机及其侧离合器手柄的探讨和改善设计_doc_1.png---(点击预览)
PF455S插秧机及其侧离合器手柄的探讨和改善设计_doc_0.png---(点击预览)
PF455S插秧机及其侧离合器手柄的探讨和改善设计_doc.txt---(点击预览)
PF455S插秧机及其侧离合器手柄的探讨和改善设计.doc---(点击预览)
NUMERICAL CONTROL数控技术_doc_2.png---(点击预览)
NUMERICAL CONTROL数控技术_doc_1.png---(点击预览)
NUMERICAL CONTROL数控技术_doc_0.png---(点击预览)
NUMERICAL CONTROL数控技术_doc.txt---(点击预览)
NUMERICAL CONTROL数控技术.doc---(点击预览)
MR141剥绒机锯筒部、工作箱部和总体设计_doc_2.png---(点击预览)
MR141剥绒机锯筒部、工作箱部和总体设计_doc_1.png---(点击预览)
MR141剥绒机锯筒部、工作箱部和总体设计_doc_0.png---(点击预览)
MR141剥绒机锯筒部、工作箱部和总体设计_doc.txt---(点击预览)
MR141剥绒机锯筒部、工作箱部和总体设计.doc---(点击预览)
MILLING铣削_doc_2.png---(点击预览)
MILLING铣削_doc_1.png---(点击预览)
MILLING铣削_doc_0.png---(点击预览)
MILLING铣削_doc.txt---(点击预览)
MILLING铣削.doc---(点击预览)
Machine design theory机械设计理论_doc_2.png---(点击预览)
Machine design theory机械设计理论_doc_1.png---(点击预览)
Machine design theory机械设计理论_doc_0.png---(点击预览)
Machine design theory机械设计理论_doc.txt---(点击预览)
Machine design theory机械设计理论.doc---(点击预览)
LATHE车床_doc_2.png---(点击预览)
LATHE车床_doc_1.png---(点击预览)
LATHE车床_doc_0.png---(点击预览)
LATHE车床_doc.txt---(点击预览)
LATHE车床.doc---(点击预览)
JLY3809机立窑(总体及传动部件)_doc_2.png---(点击预览)
JLY3809机立窑(总体及传动部件)_doc_1.png---(点击预览)
JLY3809机立窑(总体及传动部件)_doc_0.png---(点击预览)
JLY3809机立窑(总体及传动部件)_doc.txt---(点击预览)
JLY3809机立窑(总体及传动部件).doc---(点击预览)
JLY3809机立窑(加料及窑罩部件)设计说明书 2006_doc_2.png---(点击预览)
JLY3809机立窑(加料及窑罩部件)设计说明书 2006_doc_1.png---(点击预览)
JLY3809机立窑(加料及窑罩部件)设计说明书 2006_doc_0.png---(点击预览)
JLY3809机立窑(加料及窑罩部件)设计说明书 2006_doc.txt---(点击预览)
JLY3809机立窑(加料及窑罩部件)设计说明书 2006.doc---(点击预览)
J45-6.3型双动拉伸压力机的设计_doc_2.png---(点击预览)
J45-6.3型双动拉伸压力机的设计_doc_1.png---(点击预览)
J45-6.3型双动拉伸压力机的设计_doc_0.png---(点击预览)
J45-6.3型双动拉伸压力机的设计_doc.txt---(点击预览)
J45-6.3型双动拉伸压力机的设计.doc---(点击预览)
introduction to CAD CAD概论_doc_2.png---(点击预览)
introduction to CAD CAD概论_doc_1.png---(点击预览)
introduction to CAD CAD概论_doc_0.png---(点击预览)
introduction to CAD CAD概论_doc.txt---(点击预览)
introduction to CAD CAD概论.doc---(点击预览)
Introduciton of Machining加工基础_doc_2.png---(点击预览)
Introduciton of Machining加工基础_doc_1.png---(点击预览)
Introduciton of Machining加工基础_doc_0.png---(点击预览)
Introduciton of Machining加工基础_doc.txt---(点击预览)
Introduciton of Machining加工基础.doc---(点击预览)
High-speed machining and demand for the development高速切削加工的发展及需求_doc_2.png---(点击预览)
High-speed machining and demand for the development高速切削加工的发展及需求_doc_1.png---(点击预览)
High-speed machining and demand for the development高速切削加工的发展及需求_doc_0.png---(点击预览)
High-speed machining and demand for the development高速切削加工的发展及需求_doc.txt---(点击预览)
High-speed machining and demand for the development高速切削加工的发展及需求.doc---(点击预览)
FXS80双出风口笼形转子选粉机_doc_2.png---(点击预览)
FXS80双出风口笼形转子选粉机_doc_1.png---(点击预览)
FXS80双出风口笼形转子选粉机_doc_0.png---(点击预览)
FXS80双出风口笼形转子选粉机_doc.txt---(点击预览)
FXS80双出风口笼形转子选粉机.doc---(点击预览)
DTⅡ型带式输送机的设计_doc_2.png---(点击预览)
DTⅡ型带式输送机的设计_doc_1.png---(点击预览)
DTⅡ型带式输送机的设计_doc_0.png---(点击预览)
DTⅡ型带式输送机的设计_doc.txt---(点击预览)
DTⅡ型带式输送机的设计.doc---(点击预览)
Computer Aided Process Planning计算机辅助编制工艺规程_doc_2.png---(点击预览)
Computer Aided Process Planning计算机辅助编制工艺规程_doc_1.png---(点击预览)
Computer Aided Process Planning计算机辅助编制工艺规程_doc_0.png---(点击预览)
Computer Aided Process Planning计算机辅助编制工艺规程_doc.txt---(点击预览)
Computer Aided Process Planning计算机辅助编制工艺规程.doc---(点击预览)
Chip formation 切削成型_doc_2.png---(点击预览)
Chip formation 切削成型_doc_1.png---(点击预览)
Chip formation 切削成型_doc_0.png---(点击预览)
Chip formation 切削成型_doc.txt---(点击预览)
Chip formation 切削成型.doc---(点击预览)
CG2-150型仿型切割机_doc_2.png---(点击预览)
CG2-150型仿型切割机_doc_1.png---(点击预览)
CG2-150型仿型切割机_doc_0.png---(点击预览)
CG2-150型仿型切割机_doc.txt---(点击预览)
CG2-150型仿型切割机.doc---(点击预览)
111
翻译资料
英文翻译
英语翻译
CAD图.dwg
外文资料翻译.rar
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:22001231    类型:共享资源    大小:69.11MB    格式:ZIP    上传时间:2019-09-15 上传人:QQ24****1780 IP属地:浙江
30
积分
关 键 词:
机械类 翻译 cad
资源描述:
机械类翻译带CAD图,机械类,翻译,cad
内容简介:
Design of Lightweight Lead Screw Actuators for Wearable Robotic ApplicationsJournal of Mechanical DesignKevin W. Hollander Thomas G. SugarA wearable robot is a controlled and actuated device that is in direct contact with its user. As such, the implied requirements of this device are that it must be portable, lightweight, and most importantly safe. To achieve these goals, The design of the standard lead screw does not normally perform well in any of these categories. The typical lead screw has low pitch angles and large radii, thereby yielding low mechanical efficiencies and heavy weight. However, using the design procedure outlined in this text, both efficiency and weight are improved; thus yielding a lead screw system with performances that rival human muscle. The result of an example problem reveals a feasible lead screw design that has a power to weight ratio of 277 W/kg, approaching that of the dc motor driving it, at 312 W/kg, as well as a mechanical efficiency of 0.74, and a maximum strength to weight ratio of 11.3 kN/kg 。 1 Introduction One in five persons in the United States live with some form of disability, with 61% of those suffering from either a sensory or physical disability.As an example, within the elderly population,8% to 19% are affected by gait disorders . Many disabled individuals could benefit from some form of robotic intervention. A wearable robot is a computer controlled and actuated device that is in direct contact with its user. The purpose of such a device is the performance/strength enhancement of the wearer. It can be used in training, in therapy, or simply as a device to assist in functional daily living. The implication of the term “wearable” isthat the robot must be portable, lightweight, and most importantly safe. In contrast, a factory floor robot is none of these things, so the simple adaptation of existing technology is not possible. The standard approach to wearable robot design suffers from three major limitations;1 Low battery power density;2 motors with low “strength to weight” ratios;3 weight and safety of a mechanical transmission system. The goal of this work is to review the design process of a lead screw actuator; the result of which will demonstrate significant improvements over the limitations described in item number 3, i.e., the weight and safety of the mechanical transmission system.2 BackgroundInterest in the area of wearable robotics has grown over the last decade. The recent surge of interest can be attributed to advancements in electronic miniaturization, microprocessor capabilities, and wireless technology proliferation. The feasibility of a portable computer controlled strength enhancing device is closer to reality However, aside from the availability of portable computation platforms, issues of the physical mechanism must still be addressed. The main issues in any wearable robot development are power, weight, and safety. How much power is available to do mechanical work? How much additional weight does the robotic device add to the person? And, how can this power be transferred and still maintain safety? The safe interaction between the wearer and theactuated robot has to be the primary concern in a wearable robot design.The purpose of a wearable robotic system is to offset the effort or energy of the operator by some amount of energy from a storage device, i.e., battery, fuel cell, and air tank. The sharing of the work load between the operator and the robot is heavily influenced by actuator efficiencies and the overall system weight. The additional weight that the robot adds to the user, in many cases, can increase the total amount of work required to accomplish a given task. This means that the robot not only has to augment the operators abilities, but must also compensate for its own additional weight.2.1 Actuator Comparisons. Human skeletal muscle is the “gold” standard by which many robotic actuators are compared. Known for their good “power to weight” ratios and excellent force production capabilities, skeletal muscle performance is what most actuator designers would like to match. In order to match the performance capabilities of skeletal muscle, it is important to know some of its measures. Unfortunately, common throughout biological literature is a wide variation of measured muscle properties. Although reported values have a wide variance, these values can still give a sense of scale in which biological materials behave. Data tabulated and estimated from several sources were used to describe the attributes of human muscle performance, and the result of which can be seen in Table 1.Table1:Actuator comparison: Compares various actuator types by mechanical efficiency, power to weight ratio, “corrected”power to weight ratio, and strength to weight ratio Measuresallows the direct comparisons to be made based upon utilization of available energy. However, both of these parameters need to be examined in the development of a wearable robotic actuator. Consider that if all actuators were to operate at 100% efficiency, then the entire group could be compared directly by their respective power to weight ratios. However, if only the power stated in the power to weight ratio were supplied to each actuator, then because of their respective efficiency, only a fraction of that power would be yielded as output. Therefore, to appropriately compare the above described actuators, their corrected power to weight(c) ratios must be computed (1)where is the mechanical efficiency and Pwt is the original power to weight ratio. The results of this calculation for various kinds of actuators can be seen in Table 1.Values in Table 1 were obtained either by referenced literature or estimations based upon that literature. The values for the dc motor are for the Maxon RE40 motor. The values for the + gearbox combination were also found in the Maxon 2004 catalog. values from an electric Series Elastic Actuator were used to estimate these parameters. However, a similiarly sized lead screw system will likely have a better strength to weight ratio, due to its ability to carry higher loads and its nut is of lower weight. For the McKibben style air muscles, a variety of literature was found describing its relevant measures.Immediately evident in this comparison is that the corrected power to weight, cP, values of the dc motor, the air muscle and human skeletal muscle are all similarly matched. However, once additional hardware is added to the dc motor, its performance decreases significantly. If one could create a mechanical transmission system that did not significantly alter the weight of the dc motor based actuator, then performances very near that of human skeletal muscle could be achieved.3 Lead Screw Design。Seen above, the performance of a typical lead screw system is limited when compared to other wearable robotic actuator concepts. The primary reason for its low performance is poor mechanical efficiency. The coefficient of friction in a standard lead screw system is approximately =0.36., metal on metal, better results are possible if lubrication is used.In contrast, the typical ball screw system has very good mechanical efficiency. The rolling contact of the ball bearings keeps the frictional effects on this system to an absolute minimum. However, even with its improved efficiencies, the cP value for the ball screw actuator is still well below that of skeletal muscle, due directly to the considerable weight of the ball screw system. To improve the cP performance of a ball screw, a significantreduction of weight must be achieved.Journal of Mechanical Design Fig. 1 Lead screw geometry; as drawn, pitch p and lead lare equivalent in a single helix screw The basic mathematics surrounding the design of a lead screw can also apply to a ball screw system. The primary difference between these two mechanical transmissions is their coefficient of friction. In the following section, an exploration of the design parameters that influence weight and mechanical efficiency of a lead screw will be considered and thus improvements to its ccan be made.3.1 Lead Screw Geometry.Shown in Fig. 1 is the basic geometry of a common lead screw. The key parameter of a lead screw is the lead, l, which is dependent on screw radius, r, and lead angle. The lead, l, is the amount of displacement achieved for each revolution of the screw. A high precision screw has a very short or fine lead. The right triangle in Fig. 1 shows the unwrapped geometry of a single revolution of a screw. The lead angle , represents the incline or slope of the screw thread. The base of the triangle is the circumference of the screw shaft, the right leg of the triangle is its lead, and the hypotenuse representsthe path length of the helical thread. Also seen on the right triangle are the forces present on a screw that is lifting a load. The force of the load is shown as Fw, the force resulting from the torque on the screw is F, the normal reaction force on the thread of the screw isN, and the frictional force is N. From this diagram, the following equation for a lifting torque can be derived (2) 3.2 Alpha Versus R.Considering, again, the geometry of a lead screw in Fig. 1, it can be shown that leadl, is described both by screw radiusr, and lead angle. The relationship between these variables is given in (3) (4)The meaning of Eq(4)is that both r, screw radius, and, lead angle, are necessary to create a screw lead, l. This means that there exists a continuous relationship between r and . Although this continuous relationship exists, most screw systems are designed with very small lead angles. A review of the preferred ACME screw sizes reveal that although the individual diameters vary, the lead angles are all less than 3.From Eq(4).it is shown that for any screw lead desired, a variety of radii could be used. The significance of this is that as screw radius, r, shrinks, the weight of the screw shrinks by a factor.r2 Thus, to compensate for small screw radii, a larger value of lead angle , must be considered.Fig. 2 Mechanical efficiency of lead screw systems: Shaded part of the graph is the typical design region for the majority of lead screws. is small, radius is large, weight is large, and efficiencies are lower. Designs in the unshaded region of the graph, where is large, implies smaller radii, lower weight, and higher efficiencies. 3.3 Efficiency Versus Alpha. For a wearable robot design, not only is the weight of a lead screw actuator an important issue, but the efficiency of an actuator is also key. As mentioned before, a decrease in screw radius can achieve significant reductions in actuator weight. However, while the screw radius is reduced, the lead angle, must be increased to maintain a constant lead. When looking at Eq(2). it is seen that the torque required to lift a load, Fw, is dependent upon both lead angle, as well as the coefficient of friction。Relating the efficiency of a screw to both lead angle and coefficient of friction, Figure 2 shows the impact on both coefficient of friction, and lead angle, on the efficiency of a lead screw system (5)Each line in Fig. 2 is based upon a different value of the coefficient of friction. Several common engineering materials are given as examples to give the reader a sense of what effect different materials or coatings could have on the efficiency of a lead screw system. This figure shows that as the lead angle increases, so does the mechanical efficiency; or at least until a peak value is reached.Ideally, it would be advantageous to pick the angle, based upon maximum efficiency. A lead screw system operating at peak efficiency minimizes the input torque requirements to lift the load Fw. The angle at which peak efficiency occurs can be determined by taking the derivative of efficiency with respect to angle, the result of which can be seen in (6)Although a high lead angle can lead to a high efficiency, it can also lead to a system that is “back-drivable”. A back-driveable system is one in which the load, Fw, can cause a rotation of the screw without the assistance of applied torque, thus allowing the load, Fw, to self-lower. A back-driveable lead screw is a bad idea for a car jack, but is desirable in a wearable robot. For the lead angles in which back-drive will occur (7)Lead angle and coefficient of friction are all that influence this condition, regardless of how high the load force becomes. Fora very low coefficient of friction system, such as a ball screw,back-drive is an inevitable consequence.4 Practical ConsiderationsIdeally, as shown in the previous text, it would be desirable to reduce our screw radius, r, to an almost microscopic scale. However, this is not a practical solution, neither from a design nor manufacturing perspective. Although small screw diameters and high lead angles are desired from the perspective of weight and efficiency, they may not allow the designer to meet the strength demands of the physical system. Issues, such as axial yielding,compression buckling, and mechanism bind, need to be considered as well. Consider that a single ultrathin screw may be lightweight, although it may not be strong enough to carry the load required by the system. A single or several screws can be used, but must be sized large enough to handle the load placed upon it. As a note,there is no weight advantage to using several small screws to carry a large load, as the computation for both weight and stress are driven by a cross-sectional area of the screw. However, using several small screws to carry the load can allow the continued use of high lead angles and thus operate with high efficiencies, even in the presence of high loads. By pushing the limits of raw material properties of the lead screw, high axial loading can be achieved. This approach works better for a tensional system than it does for a compression bearing system. When considering the compressive loading of a long slender screw, Euler buckling must be addressed . Similar to that of the McKibben actuators or even human muscles, a lead screw actuator could be designed to bear a tensional load only, thus eliminating the consideration of buckling altogether. Creating a tension-only actuation system in a wearable robot does not necessarily mean that an antagonistic pair is required. In fact, for an assistance robot, a disabled person may only have muscle weakness in a single actuated direction and, therefore, a single tensional actuator would be all that is required to aid that person.。For those designers who would push the limits of the screw radius and thus lead angle to beyond that of maximum efficiency, the presence of friction limits just how far the angle can be inclined. The physical interpretation of this is that the system willbind or lock. This can be seen by evaluating Eq.(2). An evaluation of the denominator in Eq.(2). yields the following relation。 (8) In addition to the practical considerations listed here, there exists many other issues that could be detailed. Examples of which may include torsional stiffness/yielding or even heat dissipation. Each of these factors are important and worthy of consideration, however, the purpose of this exercise is to demonstrate an alternativeto the typical approaches of designing or selecting screw systems. The benefits of this alternative approach are directly applicable to the design issues of a wearable robotic system.5 Example Problem To demonstrate a crude design exercise, consider the peak ankle joint torque during gait of an able-bodied or normal individual that weighs 80 kg and walks at 0.8 Hz stepping frequency. The peak ankle torque during gait is approximately 100 Nm. This peak occurs at roughly 45% of the gait cycle, A gait cycle is defined by the heel strike of a foot to the next heel strike of the same foot. Toe off is the point in which the weight of the individual has transferred to the opposite leg and the initiation of swing begins. The conclusion of the swing phase of gait places the foot back into a heel strike position again and then the next gait cycle can begin.As an example, let us consider building a lead screw actuator for ankle gait assistance. For our problem, let us assume the levelTable 2: Example problem actuator comparison: Compares lead screw designs I and II to human muscle in terms of mechanical efficiency, power to weight ratio, corrected power to weight ratio and strength to weight ratio, measures of assistance to be at 30% and that the actuator acts with a 12 cm moment arm to the ankle joint. These values can be changed but, based upon personal experience, are reasonable in their scale. Using these values and parameters available for a chosen Maxon motor, the RE40, a range of lead lengths for this example solution has been determined; the range of possible screw leads areExample Problem Results. Two lead screw designs were generated to solve this problem. The first design, lead screw I, is a design solved for maximum efficiency. Assuming a lead of 2 mm and a =0.05, yields an efficiency of 0.9 for the screw at =43.5 and a radius of 0.34 mm. With such a small radius, multiple screws are needed to hold the load. Even so, estimates for the actuator power to weight are 280 W/kg. Power to weight has been determined by dividing the peak power required in our example by the weight of the motor and estimated transmission system. From our previous work, the weight of the accessory components was scaled proportionally to the reduced weight of the screw and nut.The second design, lead screw II, uses dimensions available from a commercial vendor. The screw is estimated to have an =13.6 and an efficiency of 0.82. Even with these larger dimensions, the actuators power to weight ratio of 277 W/kg =0.74 is expected. The results of this example problem have been tabulated for the purpose of comparison. Table 2 shows the numerical results of both example lead screw designs. These values are compared to the previous values tabulated for a dc motor alone, and the estimated values for human skeletal muscle. The strength to weight properties calculated for these examples is based upon the peak force required by our example.6 DiscussionIn the analysis of the maximum efficiency solution, lead screw design I, it was shown that a single small radii screw will not always handle the loads required of it. However, a bundle of screws operating in parallel can perform that task with the same high efficiency. Although a 0.34 mm radius screw would not be easily manufactured using typical techniques, it is possible that this kind of approach i.e., use multiple screws to maintain high efficiency could be useful for a MEMs scaled device. One could imagine a compact “force pack” built up from many high efficiency small diameter screws. Without going to the extremes in efficiency for a particular screw design, it was shown that for lead screw design II, a feasible solution exists for our example problem of ankle gait. Corrected power to weight values were obtained that are very close to those discussed for human muscle. Using a similar approach, a ball screw mechanism could benefit in performance, as well. The general approach to creating back-driveable, low weight, and high efficiency screw system can make a dc motor-based actuator a competitive solution f
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机械类翻译带CAD图
链接地址:https://www.renrendoc.com/p-22001231.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!