资源目录
压缩包内文档预览:
编号:22001231
类型:共享资源
大小:69.11MB
格式:ZIP
上传时间:2019-09-15
上传人:QQ24****1780
认证信息
个人认证
王**(实名认证)
浙江
IP属地:浙江
30
积分
- 关 键 词:
-
机械类
翻译
cad
- 资源描述:
-
机械类翻译带CAD图,机械类,翻译,cad
- 内容简介:
-
维普资讯 CHINESEJOURNALOFMECHANICALENGINEERING 92 v0118,No1,2005 SELFRECONFlGURATlONOF UNDERACTUATEDREDUNDANT HeGuangping MANIPULATORSWITHOPTIM亿lNG SchooIofMechanicaIand ElectricalEngineering, THEFLEXIBILITYELLlPSOlD木 NorthChinaUniversityofTechnology, Beijing100041,China LuZhen Abstract:Themultimodesfeature,themeasureofthemanipulatingflexibility,andself-reconfigurat ScheoIofAutomationScience ioncontro1methodoftheun deractuatedredun dna tmna ipulatorsareinvestigatedbasedontheopti andElectriacIEngineering mizingtechnologyTherelationshipbetweentheconfigurationofthejointspaceandthemnaipulating BejiingUniversityofAeronautics flexibilityoftheunderactuatedredun dna tmna ipulatorisna alyzedanew measureofmna ipulating andAstronautics, flexibilttyellipsoidfor出eunderactuatedredundantmanipulatorwithpassiveointsin】ockedmodejs Beijing100083,China proposed,which can be used to gethte optimal configuration for the realization of hte self-reconfiguration contro1Furthermoreatimevaryingnonlinera contro1methodbasedon har monic inputs is suggested ofr fulfillnig hte self-reconfigurationA simulation example ofa htreeD0Fsunderactuatedmnaipulatorwithonepassivejointfeaturessomeaspectsoftheinvestiga tjons Keywords:Underactuatedmanipulators Self-reconfiguration Optimization Nonlinearcontro1 deractuatedacrobotTheseresearchesontheconrtolofunderac 0 INTRoDUCTIoN matedsystem haverevealedhtatthesemethodsraenothingbut nonlinera,timevaryingand discreteinnatureThefactismat Underactuatedmechanism andmanipulatorcan beused in Brockett 【”haveprovedthatthereisnosmoothand satticstate somefieldssuch asspacetechnology,cooperationrobotand feedback 1aw htatstabilizesthesystem toagivenconfingration metamorphicmechanismInthespacefield,forthesakeofno asymptoticallyAnobviousfeatureofthenonholonomicsystem is losingtheusefulfunctionorrealizingthereconfigurationofthe tllatitisconrtollablein aconfiguration spacewithmoredimen systemthefaulttolerancebasedontheunderactuatedtechnology sionshtna htatofhteinputspaceS0matmuchattentionshavebeen isessentialwhensomeactuatedcomponentsrevealsometroubles paidonhteconrtolofhtenonholonomicsystem Anunderacmatedmnaipulatoralsocanbedesignedasacoopera Theunderactuatedmechna ism ormanipulatoralsoiSdisobe tionrobotthatistosayC0B0T ThedriversoftheCOBOTare dienttohtefundamenatlprincipleofthemechanism desing ing notforacreatingthemachinebutforprovidingaldnematicscon theorythatjsthenumberoftheacmatedcomponentsshouldequal straintthatisusuallynonholonomicTheC0B0Tneedsoutside t0 thatofhteDOFsofthemechanismTheunderactuatedma 1oteehtatisprovidedbyoperatorandcancompletesomeaccurate nipulatorhadbeensuggestedfirstly isnotbyreason thatithas apphcatlonssuchas in biologY englneenng,surgical,andsemi somemeritsdistinctly,butsomereserachesshow thattheunder- conductormanufactureand so onIn thefieldofmechanisms, actuatedmechanism desing edpurposelyalsoiSvaluableForex themetamoprhicmechanism hasmultimodesnad can bertans ma pleRivhter,etal141havemeasuredmultidimensionsofrceby formedfrom onemodetona other,hadbeenpresentedrecentlyt a flexibleunderactuated manipulator,Nakamuraetalt” have Thertansfomr ationbetweenhtedifferentmodesislikelytoresult desing edanonholonomicmanipulatorbasedonhtewheelrolling inchangeoftheDOFsorconsrtaintsofthemetamoprhicmecha conatctand conrtolled a four DOFs plnara manipulator by nismItisobviously thatconrtoltheunderactuatedredundant wtoinputsHeetal【 haveproposedacollisionrfeemotionplna actuatedna d flexiblemechanism cannotbe evadedThereofre。 algorithm ofrhteun deractuatedredundantmanipulatorBasedon hteunderacmated system becomesan attractiveresearch field theresultsthathavebeendiscussedabove。weCallconcludehtat gradually theinvestigationabouttheun deractuatedmanipulatordeliberately Th eresearchesontheunderacmatedmanipulatorsmanifest mayresultinsomenew phenom enontobediscovered,techniques thesystem cnanotbeconrtolledbykinematicsTh emotionofthe t0beproposedorhteorytobeofrmedhtereofrecouldbedevelop passiveiointcanbemovedbythedynamiccouplingonlyL4,3JJain, themechanicspotentially etal 【haveshown htatthedynamiccouplingissecondorder InthisPape weexplorethestaticfeamrenadself-reconfigu nonholonomic cons仃aints0fhteunderacmatedmanipulatorIn rationconrtolmethodofrhteunderactuatedredundna tmanipula conrtastwiththefacthtatnonholonomicsystem isstdiedexten t0rS sively aboutonehunrdedofyerasinmechna icsbutthemotion planningna d conrtolofthenonholonomicsystem iSno longer 1 FLEXIBILITYELLIPSoID htna wtodecadena dthestdieslimitedinthefirstordernon holonomicsystem (suchaswheelmovingrobottJ,hoppingrobott Themanipulating stiffnessisan importantpraameterofa nadspacerobotWJ)mainlyInhteaspectofhtereserachonhteun manipulator,whichcna beusedinhteofrceorimpedanceconrto1 deractuatedmanipulatorsAnthoneyetalt haveinvestigatedhte Amnaipulatorisopenchaininmechna ism generally,andhtelinks satbilityofhtemotionAraietalLIIJhaveproposedatime。scaling alwaysraerigidbodies,sothedeofmr ationonendeffectorresults mehtodnadachievedhtepositionconrtolofhtes3stemLeeetalLlZ from theiointsmainlyThestiffmodecanbewrittentotheofllow havepresentedseveralkindsofnonlinearconrtolmetbo dofrun equationapproximately M = i=1,2,。, (1) ThisprojectissupportedbyNali0nalNatura1scienceFoun血Ii0nofchim where ,T0rque0fj0int (No50375007,No50475177)ReceivedMarchl0,20o4;receivedinrevised f0INOvember23,2004;acc印tcdDecember2,2004 维普资讯 CHINESEJOURNALOFMECHANICALENGINEERING 93 Def0mationofjointi kiStiffhessconstantofjointi Ifthegravitationandthefrictioninthejointsareignored, supposinghtereisaforcevector F R on themanipulators endeffector,theequivalentjointtorquecanbewrittenas M =JF (2) where M R EquiVaIenttorqueofthejoints J R JacObianmatrix Itiswellknownthatthedeformationsonthejointsandthe endeffectorhavearelationshipasfollows Fig1 Planar2Rmanipulator Ax=JA0 (3) where Ax Microdisplacementoftheendeffector Micr0displacementofthejoints WewriteEq(1)asamatrixfomr andcombineitwithEqs(2) and(3),bysomesimplecalculations,therelationshipbetween Ax na dFcanbewrittenas Ax=(以t,)F (4) where b ,i 11日一, a_力 b 一日 11B1 a_力 Singularity valueo1 0 0 0 0 k2 0 0 Fig2 GFEofafullactuatedplanar2Rmnaipulator (5) 0 0 0 L1:L2=10In 101=02=60。 2 = :35。 3 :o2:2o。 0 0 0 Ifwedefine C :Jk J (6) Eq(6)istosaytheflexibilitymatrixoftheend-effectorWhereas C correspondstothestifinessmatrixinatskspaceTheflexibi1- itymatrix C cna beused tomeasurethesatticfeatureofMa nipulatorMatrix C isalsoafunctionoftheJacobina henceitis changeableinalargerangofritrelationstotheconfigurationand hteconstructionpraametersThevariablefeaturesofthemanipu latorinstaticcna beusedtocompletesomecomplinatandcom。 plexmna ipulationsuchasassemblage,polishingtreatmentandso Singularityvalue 1 onBasedonEqs(5)and(6),wecanseemartix C issymmet- ric Fig3 GFEofaufll-acutatedplna ar2Rmna ipulator Ifwedefine LI:05inL2=10ni 165=82=60。 265=82=35。 301=02=20。 det() (7) Thesefiguresshow thatthemeasuredependsonthe con figurationandthestructureprama etersW hereasaufllactuated anddecomposematrix C bythesingulravalue,fromEq(7)we manipulator1sunabletobechangedtothestructurepraam eters have generallyTherefore,theGFEcna bechangde bydifferentcon。 figuration(Fig2)butnotthestructurepraameters(chnagefrom = 丌 (8) Fig2toFig3)Whensomepassiveiointsraeinrtoducedintothe fu11acutatedmanipulator,forsomeconveniencesupposingthat where o-i, i=l,2, , ,denotesthesingulra valueofmartixC thepassivejointsraeequippdewithbrakesandpositionsensorso mat the brka es cna switch the passive ioints bewt een hte Thereforetheexpression c isapositivedefinitesymmertic rfeeswingmodeand也elockedmodethustheunderacutated matrix,na dna equationcanbedefinedas rdeundnatmnaipulatorrevealssomeredundantDOFsinkinemat xT(cc)=1 (9)icsbutcannotbeshown in “self-motion”forthatthedimension oftheinputsspaceisnotmorethanhtatofthetaskspacetypically Ontheotherhand,switchingthemodeofthepassiveioinscan Eq(9)describestheequationofageneralizde ellipsoidThis reconfiRalretheun deracutatde manipulator,andthesystem reveals ellipsoidistosaythegeneralizedflexibilityellipsoid(GFE)The somedexterousnessinadaptingtodifferentworks principalaxesoftheellipsoidareequaltothesingularvaluesof matrixC respectivelyForsomeintuitionisticsake,aplanarwt o 2 FLEXIBILITY M ATIUX linksmanipulatorthatthelengthoflink s L =10m , i=1,2,is regradedasanexample(Fig1),andsomeGFEsareshownin Supposedthathtereraespassivejointsinanunderacut- Fig2nadFig3 atedredundantmnaipulator,andthepassivejointsraeequipped 维普资讯 HeGuangping,etal:Self_rec0nfigurati0nofunderactuatedredundantmanipulators 94 withoptimizingtheflexibilityellipsoid withbrakesWhenthepassivejointsarefreeswingmode,the workinginthefu11actuatedmodeonecancontrolittomanipula micromotionequationsofthemanipulatorcanbewrittenas tionSubstantivelythemanipulatorworking in underacutated modecna realizesomemnail:、ulationsuchas positionconrtolp or = Ja +JpA0p (10) discretepointtopointmotionL41Butthisisnothtecenrtalofhtis PaDerWepayattentiontohtestaticfeaturena dself-reconfiguration where AxR _ Microdisplacementoftheendeffector conrtolmethodoftheunderacutatedredundantmna ipulator R Submatrix oftheJacobian ofthema Thekinematicalequationsofthewtomodesoftheunderac nipulatorcorrespondingtotheactuated utatedmanipulatorcanbeestablishedbymanymethods(suchas joints DenavitHartenbergmethod)butthereisadifficultyinthestruc tureparametertobedefinedoframultiDOFmanipulatorthatis J一R _submatrixoftheJacobian ofthema complicatedinmechna ismToresolvethisproblemnextweana nipulatorcorrespondingtothepassive lyzetherelationshipbewt eenhtewtomodesoftheunderacutated joints redundnatmanipulator R, R Microdisplacementinactuatedjoints Givena specialconfiguration ofthemanipulator,and sup andthepassivejointsrespectively posing thathas , m thedeofmr ationsofthe end effector Whenthepassivejointsarelocked,themicromotionequa underthewtomodesofthemechna ism willbethesameThiscan tioncanbedescribedas beexpressedas Ax=J1碍 (11) -,IAq=J + p (12) where R Micr0一displacementoftheendeffector JIR Jacobianofhtemnaipulatoraspassivejoints Jaaaa Je=0 (13) locked Thatmenasthemicromotionoccurredinjointspacedoesnot AqR Microdisplacementinhteactuatedjoints changehtepositionoftheendeffectorFromEq(13),na expres ItisobviouslythatEqs(11)and(3)havethesameforms sioncanbewrittenas Eqs(10)and(11)indicatethatnaunderacutatedmanipulatorhas twodifferentmodelinkinematicsInotherwords,thesystem has 8=一JJa8a (14) thefeatureofmultimodesinkinematicsA planar3Rmanipula torshown inFig4canberegardedasanexampleofthisThe where ()denotestheMoorePenrosepseudoinverseSubstiutt secondjointofthemanipulatorispassive,andtheothersareactu ingEq(14)intoEq(12),weobatin atedWhenhtepassivejointisrfee,0R canbechosenasthe -,I=(,一JpJ;)JalAOa (15) generalizedcoordinatesIfthepassivejointislocked,theDOFsof themanipulatorchna gestowto,nadthegeneralizedcoordinates Eq(15)describesthesameconfigurationofhtewtomodesof cna beselectedas qR Forthereasonof q0 obviously hteun deracutatedmanipulatorThereforethemicromotion de thus hte Jacobian matrix satisfies the relationship of notedbythewtokindsofgeneralizedcoordinateswillbesame -,Il I LetAq=AOa,afomr ulationisobtainedas -,I=(,一Jos;)s (16) Eq(16)showstherelationshipofhteJacobianinhtewto modes,which cna beused to predicttheperfomr anceofthe fullactuatedmodeSubstitutingEq(16)intoEq(5),anewflexi bilitymartixofunderacutatedmanipulatorin ufllactuatedmode cna bewrittenas c:Jk一、J (17) TheGFE ofrtheunderacutatedmanipulatorcna alsobede finedaccordingasEq(71Eq(17)indicatesthesatticfeatureof the system afterthemechanism reconfiguredOneemore,we showitbyhteplnara3Rmanipulator(Fig4、Foranonredundant manipulatorifwegiveapointinthetaskspacethereisonlyone flexibility ellipsoid corresponding to itBy contrary,thereare manyonescorrespondingtoapointintaskspaceofraredun dant Fig4 Planar3Rmanipulator mechanismSupposingthelinkslengthofthe3Rmanipulatorrae L,=L,=05m na d L :10m ,the initialconfiguration is Byreasonthattheunderacutatedmanipulatorhavedifferent = 60。, =一60。, =一30。,someoftheGFEscorresponding kinematicsmodes,onecna selectan optimalconfiguration and reconfigurethemanipulatorofradaptingtoadifferenttaskAn totheinitialpositionofhteendeffectorraegiveninFig5 essentialproblem ishow topredicttheperfomr anceofthema Itisobviouslythereraealotofconfigurationsiniointspace nipulatorofrfu11一actuatedmodelbasedontheunderacutatedmode correspondingtoonestateoftheatskspaceTheseconfigurations ofitUnlikeafu11actuatedredundnatmanipulator,theunderacut rae corresponding to differentgeneralized flexibility ellipsoids atedredundna tmanipulatorcannotimprovetheperofmr anceby respectivelyThusna underacutatedredundantmnaipulatorhas itselfand implementama nipulationtask simultaneously tothe thecapabilityofreconfigurationGenerally,weexpectthegener reasonoffewerdimensionsininputspacethanthetaskspaceA alizedflexibility ellipsoidhasasimilra perfomr na ceindifferent feasibleapproachistodecomposethesetaskstoindifferenttime direction oftheprincipleaxesIn otherwords,the ellipsoid foractualizingForexamplewhenthemanipulatorisworkingin ismore similra to abal1So hte firstconfiguration hasthe theun deracutatedmode,onecanreconfigurethemechanism ofr bestperfomr anceamongthethreeconfigurationsthatisgivenin an appropriateconfigurationWhereaswhen htemanipulatoris Fig5 维普资讯 CHINESEJOURNALOFMECHANICALENGINEERING 95 Oa=Aosinrot (21) 0 =一Aco cosot (22) b j一日 J(= 日一; 昌_力 g cIP】0o0 where A AInplitLldeoftheharmonicfunction 09 Angularrfequencyoftheharmonicfunction Singularityvalue (a) 0 10 Timets (a) Coordinatezm (b) 。 10【Joao互o Fig5 Generalizedflexibilityellipsoids 。 ao一一日 o勺 of3Runderactuatedmanipulator 一 5 0 1 809。, =4819。, 一9O32。 20r2485。, 1789。,03_8115。 Positionofpassivejoint0(。) 3 6O。, 舡_6O。, 一3O。 ) Fig6 HeliconmotionoftwoDOFs 3 NoNLINEAR CoNTRoL planarunderactuatedmna ipulator Forfindingan approachthatcan controltheunderactuated IfweapproximateEq(22)byhtefirstitemofitsexponential manipulatorefficaciously,weanalyzethedynamicsystemThe progression,nadsubstituteittoEq(19),weobtain dny amicequationsfortheunderactuatedmanipulatorcanbewrit tenas J(c口一AIf(o) (23) I a+I p+ca= M (18) Generally,thenagularrfequency 09 isalragenumber, +Jp p+cp:口 (19) htereforetheperiod 2nofhteham 。ni cufnction isasmall one,andtheitemssuchas Jp-p1c口,and cna berteatedas where J= consatntinthetimeofaperiod TheintergalofEq(23)canbe 乏Japdenotesmemassineniama仃ix, approximatelywrittenas c=Icac口IisthevectorofCoriolis,centriufgal,rgavitational LI-l(Cp-AI ) (24) nadfrictionaltorque,M istorquevectorofhteactuatedioints, isthegeneralizedCO0rdinatesvectorcorrespondingtotheactuated Eq(24)indicatesanapproximatedeviationafteraperiodic joints, whereascorrespondingtothepassivejointsEq(19)is time Itisobviouslyhtatthevalueoftheintergaldependsonhte secondordernonholonomicconsrtaintsgenerallythathavebeen ma plitudenadangulra rfequencyoftheharmonicinputsThisis provedbyJainetalt Anunderactuatedredundantmanipulator htereasonofthathtehamronicinputsinactuatedjointscancon- hasthecapabilityofimprovingtheperofrmna ceofhtemechanism rtolthemotionofthepassiveone ofragivenpositionintaskspacebyreconfigurationFortherea sonoflessdimensionofinputspacethna thatoftheiointspace, 4 SELFRECoNFIGURATIoN CoNTRoL htepositionconrtolofthepassiveiointcanonlyberealizedbythe dynma iccouplingBasedontheBrockett stheoryt”J Th eself-reconfiguration needsasatbleconrtoltechnology htereisno smoothsatticstatefeedbacklaw thatasymptoticallysatbilizesthe Basedontheharmonicinputnonlinearconrtolmehtodthatgiven system toagivenconfigurationThereofre,theresultsthathave insection3briefly,nextwewilldesignanew conrtolschemeto been proposedofrconrtolling ofthenonholonomicsystem rae implementtheself-reconfigurationmotionThismethodwillbe nonlinera,timevaryinganddiscreteinnatureA nonlinera con usedto optimizethegeneralizedflexibility ellipsoidforagiven rtolmethodthathas amannerofhamr onicufnctionofracutated positioninthetaskspace jointisproposedinRef17Thebasisofthismethodisthatthe Given denotesan expectedconfiugration thatisderived passivejointsiswilldeviatehteirequilibriumpositionwhenthe rfom someoptimizingmethod,0istheactualpositionofhtema actuatedjointismovinginaperiodicmanner(Fig6) nipulator Theharmonicmotionisinputtotheactuatedjoint,suchas Iet e= d一0 (25) 0=Acosot (20) 维普资讯 HeGuangping,etal:Self-reconfigurationofunderactuatedredundantmanipulators 96 withoptimizinghteflexibilityellipsoid whereeVectorofjointpositionerrors 5 SlMULATIoN STUDY decomposingEq(24)tofollowingform Inthissectiontheplanra 3R manipulatorisselectedasa jld。一0 (26) simulationmode1which isshown inFig4,Supposingthathte da 一 j secondiointofthemanipulatorispassive,nadtheohteriointsrae acutatedIftheinitialconfigurationis =60。, =一60。, =一 aslidingmodelisgivenby 30。,ofrimprovingtheperfomr anceofhtefiexibilityellipsoid。a sa= a+klea (27) betterconfiguration iS 2485。,81l789。 一8115。 whichisgiveninsection3Weregradhtelateroneas hteexpected andtheconvergencelaw isselectedas configurationInaccordancewiht htemethodthatissuggested in = 一 k2sgn(S,)一k3 (28) section4htesimulationresultisshowninFig7Fig7aindicates where,kl0,七20,如0,andsgn()indicatesasigmoidfunction, whichhashtefomr of f1 s0 。gn()1一l0 Ifvector hasamnanerof : ,fol lowingequationmaybeobtained j O,砰一4kp0,sohtatfollowingrelationscanbe dbtained 。v 墨口趸 s】o暑 口。鼍o 。v 暑口量 0口。互s0 +kddp+kpep=0 (30) Substiutting htetwice time derivation ofhte second row of Eq(26)intoEq(30),aresultcnabegivenby : + P (31) p Lethteinputsofhteactuatedjointsbe = 一 Aco cost (32) substiuttingEqs(31)nad(32)intoEq(19),htefollowingrelations hold (一Aco2cOSO)t)+Ipp( +l|)+c=0 (33) nadhteampliutdeofhteharmoniccna begivenby g 4:(Io2cosn,f)+,(rd+kep)+c (34) 口 0 Thusifthepassivejointisnotintheexpectedposition,the o controlinputoftheacutatedjointisdefinedbyEqs(32)and(34) U Onhteohterhnad,ifhtepassivejointisinhteexpectedposition, hteconrtolinputwillchnagetohtefollowingequationFrom Eq(27),htetimederivationis Coordinatezm : + =一 +kte, (35) (c) CombiningEqs(28)nad(35),theconrtollawisgivenby = kid+k2sgn(S)+k3S。 (36) Itisobviouslyhtathtemethodsuggestedhereisnonlinera and timevarying,whichobeyshteBrockeRstheoryRearrangingthe algorithmabove,theconrtollaw cna bewrittenas = +klea (37) When ep=0 issatisfied 6:k、I+k2sgn(S)+k3SI (38) Wh en ep0 issatisfied Positionerrorsofthejoints (。) = c。s小1op(+kpep)+Cp_O(2COSO(39) (d) Fig7 Self-reconfigurationofhte3Runderactuatedmanipulator M = I +I +cl (40) 1Joint1 2Joint2 3Joint3 维普资讯 CHINESEJOURNALOFMECHANICALENGINEERING 97 theiointspositionerrorswithrespecttotime;Fig7bistheioints 7 ColbaughR,BaranyEGlassKAdaptivestabilizationofuncertaninon holonomicmechnaica1systemsRobotica,l998,16f21:181192 trajectoryrespecttotime;Fig7cshowsthetransofrmationofthe 8 RobertTM Joe1W BPeriodicmotionsofahoppingrobotwiht vertical manipulators configuration in the self-reconfiguring conrtol; nadforwardmotion1nternationa1Journa1ofRoboticsResearch1993 Fig7dshowshtephaserelationsbetweenhtespeedandpositionof 12(31:197218 hteiointsObviously,themanipulatorisreconfiguredtohteex 9 PapadopoulosEDubowskySOnhtenatureofcontro1ofalgorihtmsfor pectde configurationbyitself free-floating space manipulatorsIEEETransactionson Roboticsna d Automa tion,1991,7(6):75O758 6 CoNCLUSIoNS 10 BlochA MWilsonCHConrto1nadsatbilizationofnonholonomicdv- namicsystemsIEEETransactionsonAutomaticConrtol,1992,37(111:1 746l757 Theunderactua【ted technologyisacrucialproblem notonly ll AraiHSenvi1LTimescalingcontro1ofna underactuatedmanipulatonJ forfaulttolernaceofspacerobotsystemsbutalsoofrcooperation ofRoboticSystems,1998,15(9):525-536 robotnadmetamorphicmechanismsTheunderactuatedredundant 12 LeeKVictoriaC CConrto1algorithmsofrstabiliznigunderactuated manipulatorhas thecapabilityofrealizingthemechna ism recon robotsJofRoboticSystem,1998,15(12):681-697 figuration by itsel Thenew generalized flexibility ellipsoid 13 BrockerR AsymptoticsatbilitynadfeedbacksatbilizationinDeferen tialGeometricConrtolTheoryIn:BrockerR W MillmanR SSussmna measureoftheunderactuatedredundantmanipulatorwiht passive H Jedsin:Birkgauser,1983:181-208 iointsbrakedmodeissuggested,nadhtemeasurecanbeusedto 14 Rivhterk Pfei雎 rFA flexible1inkmnaipulatoras aoficemeasuringnad optimizethestaticperformanceofhtesystemA novelnonlinear eontmllnigunitIn:Proceedingsofhte199
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。