云南省玉溪市2021-2022学年高三3月份第一次模拟考试数学试卷含解析_第1页
云南省玉溪市2021-2022学年高三3月份第一次模拟考试数学试卷含解析_第2页
云南省玉溪市2021-2022学年高三3月份第一次模拟考试数学试卷含解析_第3页
云南省玉溪市2021-2022学年高三3月份第一次模拟考试数学试卷含解析_第4页
云南省玉溪市2021-2022学年高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若是第二象限角且sin =,则=ABCD2函数,则“的图象关于轴对称”是“是奇函数”的( )A

2、充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3已知为虚数单位,若复数,则ABCD4某几何体的三视图如图所示,则该几何体的体积是( )ABCD5在中,角的对边分别为,若,且,则的面积为( )ABCD6已知函数,要得到函数的图象,只需将的图象( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度7将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )ABCD8是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9下列命题是真命题的是( )A若平面,满足,则;B命题:,则:,;C“命题为真”是“命题为真

3、”的充分不必要条件;D命题“若,则”的逆否命题为:“若,则”.10已知为抛物线的焦点,点在抛物线上,且,过点的动直线与抛物线交于两点,为坐标原点,抛物线的准线与轴的交点为.给出下列四个命题:在抛物线上满足条件的点仅有一个;若是抛物线准线上一动点,则的最小值为;无论过点的直线在什么位置,总有;若点在抛物线准线上的射影为,则三点在同一条直线上.其中所有正确命题的个数为( )A1B2C3D411已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则的内切圆的半径为( )ABCD12若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是( )ABCD二、填空题:本题共4小题

4、,每小题5分,共20分。13已知,则满足的的取值范围为_14某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为_.15已知,则_。16甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:

5、.18(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.19(12分)已知在ABC中,角A,B,C的对边分别为a,b,c,且cosBb+cosCc=23sinA3sinC. (1)求b的值;(2)若cosB+3sinB=2,求a+c的取值范围.20(12分)设为实数,已知函数,(1)当时,求函数的单调区间:(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;(3)若函数(,)有两个相异的零点,求的取值范围21(12分)已知直线

6、l的极坐标方程为,圆C的参数方程为(为参数)(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长22(10分)已知直线:(为参数),曲线(为参数)(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由是第二象限角且sin =知:,所以2B【解析】根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可【详解】设,若函数是上的奇函数,则,所以,函数

7、的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.3B【解析】因为,所以,故选B4A【解析】观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力

8、,属于基础题。5C【解析】由,可得,化简利用余弦定理可得,解得即可得出三角形面积【详解】解:,且,化为:,解得故选:【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题6A【解析】根据函数图像平移原则,即可容易求得结果.【详解】因为,故要得到,只需将向左平移个单位长度.故选:A.【点睛】本题考查函数图像平移前后解析式的变化,属基础题.7B【解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函

9、数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.8B【解析】分别判断充分性和必要性得到答案.【详解】所以 (逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.9D【解析】根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,满足,则可能相交,故A错误;命题“:,”的否定为:,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正

10、确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.10C【解析】:由抛物线的定义可知,从而可求 的坐标;:做关于准线的对称点为,通过分析可知当三点共线时取最小值,由两点间的距离公式,可求此时最小值;:设出直线方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求,从而可判断出的关系;:计算直线 的斜率之差,可得两直线斜率相等,进而可判断三点在同一条直线上.【详解】解:对于,设,由抛物线的方程得,则, 故,所以或,所以满足条件的点有二个,故不正确; 对于,不妨设,则关于准线的对称点为, 故,当且仅当三点共线时等号成立,故正确; 对于,由题意知,

11、 ,且的斜率不为0,则设方程为:,设与抛物线的交点坐标为,联立直线与抛物线的方程为, ,整理得,则,所以, 则.故的倾斜角互补,所以,故正确.对于,由题意知 ,由知,则 ,由,知,即三点在同一条直线上,故正确.故选:C.【点睛】本题考查了抛物线的定义,考查了直线与抛物线的位置关系,考查了抛物线的性质,考查了直线方程,考查了两点的斜率公式.本题的难点在于第二个命题,结合初中的“饮马问题”分析出何时取最小值.11B【解析】设左焦点的坐标, 由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.

12、【详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为: 所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.12C【解析】求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围【详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【点睛】本题考查双曲线的离心率的范围,注意运用圆心到

13、渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】将f(x)写成分段函数形式,分析得f(x)为奇函数且在R上为增函数,利用奇偶性和单调性解不等式即可得到答案.【详解】根据题意,f(x)x|x|,则f(x)为奇函数且在R上为增函数,则f(2x1)+f(x)0f(2x1)f(x)f(2x1)f(x)2x1x,解可得x,即x的取值范围为,+);故答案为:,+)【点睛】本题考查分段函数的奇偶性与单调性的判定以及应用,注意分析f(x)的奇偶性与单调性14【解析】采用列举法计算古典概型的概率.【详解】抛掷一枚硬币两次共有4种情况,即(正,

14、正),(正,反),(反,正),(反,反),在家学习只有1种情况,即(正,正),故该同学在家学习的概率为.故答案为:【点睛】本题考查古典概型的概率计算,考查学生的基本计算能力,是一道基础题.15【解析】由已知求,再利用和角正切公式,求得,【详解】因为所以cos因此.【点睛】本题考查了同角三角函数基本关系式与和角的正切公式。16【解析】分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果.【详解】甲被录取的概率;乙被录取的概率;只有一人被录取的概率.故答案为:.【点睛】本题考查独立事件概率的求解问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)

15、当时,在上是减函数;当时,在上是增函数;(3)证明见解析.【解析】(1)当时,求得其导函数 ,可求得函数的图象在处的切线方程;(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性; (3)当时,由(2)得的单调区间,以当方程有两个不相等的实数根,不妨设,且有,构造函数,分析其导函数的正负得出函数的单调性,得出其最值,所证的不等式可得证.【详解】(1)当时,所以 ,所以函数的图象在处的切线方程为,即;(2)由已知得,令,得,所以当时,当时,所以在上是减函数,在上是增函数;(3)当时,由(2)得在上单调递减,在单调递增,所以,且时,当时,所以当方程有两个不相等的实数根,不妨设

16、,且有,构造函数,则,当时,所以,在上单调递减,且,由 ,在上单调递增, .所以.【点睛】本题考查运用导函数求函数在某点的切线方程,讨论函数的单调性,以及证明不等式,关键在于构造适当的函数,得出其导函数的正负,得出所构造的函数的单调性,属于难度题.18(1),;(2).【解析】(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.【详解】(1)由得,故直线的普通方程是.由,得,代入公式得,得,故曲线的直角坐标方程是;(2)因为曲线的

17、圆心为,半径为,圆心到直线的距离为,则弦长.又到直线的距离为,所以.【点睛】本题考查参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线与圆中三角形面积的计算,考查计算能力,属于中等题.19(1)b=32(2)a+c(32,3【解析】试题分析:(1)本问考查解三角形中的的“边角互化”.由于求b的值,所以可以考虑到根据余弦定理将cosB,cosC分别用边表示,再根据正弦定理可以将sinAsinC转化为ac,于是可以求出b的值;(2)首先根据sinB+3cosB=2求出角B的值,根据第(1)问得到的b值,可以运用正弦定理求出ABC外接圆半径R,于是可以将a+c转化为2RsinA+2RsinC

18、,又因为角B的值已经得到,所以将2RsinA+2RsinC转化为关于A的正弦型函数表达式,这样就可求出取值范围;另外本问也可以在求出角B的值后,应用余弦定理及重要不等式a2+c22ac,求出a+c的最大值,当然,此时还要注意到三角形两边之和大于第三边这一条件. 试题解析:(1)由cosBb+cosCc=23sinA3sinC,应用余弦定理,可得a2+c2-b22abc+a2+b2-c22abc=23a3c 化简得2b=3则b=32 (2) cosB+3sinB=212cosB+32sinB=1即sin(6+B)=1 B(0,) B+6=2 所以B=3 法一. 2R=bsinB=1,则a+c=s

19、inA+sinC =sinA+sin(23-A) =32sinA+32cosA =3sin(A+6) 又0A23, 32b=32综上a+c(32,3考点:1.正、余弦定理;2.正弦型函数求值域;3.重要不等式的应用.20(1)函数单调减区间为;单调增区间为(2)(3)【解析】(1)据导数和函数单调性的关系即可求出;(2)分离参数,可得对任意的及任意的恒成立,构造函数,利用导数求出函数的最值即可求出的范围;(3)先求导,再分类讨论,根据导数和函数单调性以及最值得关系即可求出的范围【详解】解:(1)当时,因为,当时,;当时,所以函数单调减区间为;单调增区间为(2)由,得,由于,所以对任意的及任意的恒成立,由于,所以,所以对任意的恒成立,设,则,所以函数在上单调递减,在上单调递增,所以,所以(3)由,得,其中若时,则,所以函数在上单调递增,所以函数至多有一个零点,不合题意;若时,令,得由第(2)小题,知:当时,所以,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论