黑龙江省龙江县2023学年九年级数学第一学期期末达标检测试题含解析_第1页
黑龙江省龙江县2023学年九年级数学第一学期期末达标检测试题含解析_第2页
黑龙江省龙江县2023学年九年级数学第一学期期末达标检测试题含解析_第3页
黑龙江省龙江县2023学年九年级数学第一学期期末达标检测试题含解析_第4页
黑龙江省龙江县2023学年九年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1已知命题“关于的一元二次方程必有两个实数根”,则能说明该命题是

2、假命题的的一个值可以是( )A1B2C3D42在RtABC中,C90,若BC3,AC4,则sinB的值为()ABCD3三角形的两边长分别为3和2,第三边的长是方程的一个根,则这个三角形的周长是( )A10B8或7C7D84下列图形中,是中心对称的图形的是( )A直角三角形B等边三角形C平行四边形D正五边形5下列成语所描述的事件是必然事件的是()A水涨船高B水中捞月C一箭双雕D拔苗助长6已知圆锥的底面半径为5,母线长为13,则这个圆锥的全面积是( )ABCD7九章算术中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;

3、每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为( )ABCD8一元二次方程x2x2=0的解是( )Ax1=1,x2=2Bx1=1,x2=2Cx1=1,x2=2Dx1=1,x2=29如图,CD是O的直径,已知130,则2等于( )A30B45C60D7010若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是( )A15B20C24D3011如图,在等腰中,于点,则的值( )ABCD12下列图形中,不是轴对称图形的是()ABCD二、填空题(每题4分,共24分)13如图,反比例函数y的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第

4、二象限内有一点C,满足ACBC,当点A运动时,点C始终在函数y的图象上运动,tanCAB2,则k_14如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60角时,第二次是阳光与地面成30角时,两次测量的影长相差8米,则树高_米(结果保留根号)15一天早上,王霞从家出发步行上学,出发6分钟后王霞想起数学作业没有带,王霞立即打电话叫爸爸骑自行车把作业送来(接打电话和爸爸出门的时间忽略不计),同时王霞把速度降低到前面的一半.爸爸骑自行车追上王霞后立即掉头以原速赶往位于家的另一边的单位上班,王霞拿到作业后立即改为慢跑上学,慢跑的速度是最开始步行速度的2倍,最后

5、王霞比爸爸早10分钟到达目的地.如图反映了王霞与爸爸之间的距离(米)与王霞出发后时间(分钟)之间的关系,则王霞的家距离学校有_米.16120的圆心角对的弧长是6,则此弧所在圆的半径是_17如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图,将MN左侧纸片绕G点按顺时针旋转180,使线段GB与GE重合,将MN右侧纸

6、片绕H点按逆时针方向旋转180,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为_cm18如图,在直角三角形中,是斜边上的高,则的值为_. 三、解答题(共78分)19(8分)如图,BC是O的直径,点A在O上,ADBC垂足为D,弧AE弧AB,BE分别交AD、AC于点F、G(1)判断FAG的形状,并说明理由;(2)如图若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由(3)在(2)的条件下,若BG26,DF5,求O的直径BC20(

7、8分)如图,已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在该抛物线的对称轴x=1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=1上的一个动点,直接写出使BPC为直角三角形的点P的坐标(提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=)21(8分)如图,AED =C,DE = 4,BC = 12,CD = 15,AD = 3,求AE、BE的长. 2

8、2(10分)如图,已知抛物线yax2+bx+5经过A(5,0),B(4,3)两点,与x轴的另一个交点为C,顶点为D,连结CD(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t当点P在直线BC的下方运动时,求PBC的面积的最大值;该抛物线上是否存在点P,使得PBCBCD?若存在,求出所有点P的坐标;若不存在,请说明理由23(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k0,x0)的图象上,点D的坐标为(4,3)(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=

9、(k0,x0)的图象上时,求菱形ABCD沿x轴正方向平移的距离24(10分)如图,在中,是边上的中线,平分交于点、交于点,(1)求的长;(2)证明:;(3)求的值25(12分)如图以的一边为直径作,与边的交点恰好为的中点,过点作的切线交边于点.(1)求证:;(2)若,求的值.26二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)若方程有两个不相等的实数根,求的取值范围;(3)若抛物线与直线相交于,两点,写出抛物线在直线下方时的取值范围参考答案一、选择题(每题4分,共48分)1、A【分析】根据判别式的意义,当m=1时,0,从而可判断原命题为是假命题【详解】,解:=n2-

10、4,当n=1时,0,方程没有实数根,当n=2时,=0,方程有两个相等的实数根,当n=3时,0,方程有两个不相等的实数根,当n=4时,0,方程有两个不相等的实数根,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可2、A【分析】根据三角函数的定义解决问题即可【详解】解:如图,在RtABC中,C90,BC3,AC4

11、,AB,sinB故选:A【点睛】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型3、B【分析】因式分解法解方程求得x的值,再根据三角形的三边关系判断能否构成三角形,最后求出周长即可【详解】解:,(x2)(x3)0,x20或x30,解得:x2或x3,当x2时,三角形的三边223,可以构成三角形,周长为3227;当x3时,三角形的三边满足323,可以构成三角形,周长为3238,故选:B【点睛】本题主要考查解一元二次方程的能力和三角形三边的关系,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键4、

12、C【分析】根据中心对称的定义,结合所给图形即可作出判断【详解】解:A直角三角形不是中心对称图象,故本选项错误;B等边三角形不是中心对称图象,故本选项错误;C平行四边形是中心对称图象,故本选项正确;D正五边形不是中心对称图象,故本选项错误故选:C【点睛】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180后能够重合5、A【解析】必然事件就是一定会发生的事件,依据定义即可解决【详解】A.水涨船高是必然事件,故正确;B. 水中捞月,是不可能事件,故错误;C.一箭双雕是随机事件,故错误D.拔苗助长是不可能事件,故错误故选:A【点睛】此题考查随机事件,难度不大6、B【分析】先根据

13、圆锥侧面积公式:求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=,所以这个圆锥的全面积=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.7、D【分析】一方面买鸡的钱数=8人出的总钱数3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有人,买鸡的钱数为,根据题意,得:.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.8、D【解析】试题分析:利用因式分解法解方程即可解:(x2)(x+1)=0,x2=0或x+1=0,所以x1=2,x2=1故选D考点

14、:解一元二次方程-因式分解法9、C【解析】试题分析:如图,连接AD CD是O的直径, CAD=90(直径所对的圆周角是90);在RtABC中,CAD=90,1=30, DAB=60; 又DAB=2(同弧所对的圆周角相等),2=60考点:圆周角定理10、A【解析】试题分析:圆锥的主视图是腰长为5,底边长为6的等腰三角形,这个圆锥的底面圆的半径为3,母线长为5.这个圆锥的侧面积=故选A考点:1.简单几何体的三视图;2.圆锥的计算11、D【分析】先由,易得,由可得,进而用勾股定理分别将BD、BC长用AB表示出来,再根据即可求解【详解】解:,又,在中,故选:D【点睛】本题主要考查了解三角形,涉及了等腰

15、三角形性质和勾股定理以及三角函数的定义此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用12、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.二、填空题(每题4分,共24分)13、-1【分析】连接OC,过点A作AEx轴于点E,过点C作CFy轴于点F,通过角的计算找出AOE=COF,结合“AEO

16、=90,CFO=90”可得出AOECOF,根据相似三角形的性质得出比例式,再由tanCAB=2,可得出CFOF的值,进而得到k的值【详解】如图,连接OC,过点A作AEx轴于点E,过点C作CFy轴于点F由直线AB与反比例函数y的对称性可知A、B点关于O点对称,AO=BO又AC=BC,COABAOE+AOF=90,AOF+COF=90,AOE=COF又AEO=90,CFO=90,AOECOF,tanCAB2,CF=2AE,OF=2OE又AEOE=2,CFOF=|k|,|k|=CFOF=2AE2OE=4AEOE=1,k=1点C在第二象限,k=1故答案为:1【点睛】本题考查了反比例函数图象上点的坐标特

17、征、反比例函数的性质以及相似三角形的判定及性质,解答本题的关键是求出CFOF=1解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论14、【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可解:如图所示,在RtABC中,tanACB=,BC=,同理:BD=,两次测量的影长相差8米,=8,x=4,故答案为4“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向解题关键是根据三角函数的几何意义得出各线段的比例关

18、系,从而得出答案 15、1750【分析】设王霞出发时步行速度为a米/分钟,爸爸骑车速度为b米/分钟,根据爸爸追上王霞的时间可以算出两者速度关系,然后利用学校和单位之间距离4750建立方程求出a,即可算出家到学校的距离.【详解】设王霞出发时步行速度为a米/分钟,爸爸骑车速度为b米/分钟,由图像可知9分钟时爸爸追上王霞,则,整理得由图像可知24分钟时,爸爸到达单位,最后王霞比爸爸早10分钟到达目的地王霞在第14分钟到达学校,即拿到作业后用时14-9=5分钟到达学校爸爸骑车用时24-9=15分钟到达单位,单位与学校相距4750米,将代入可得,解得王霞的家与学校的距离为米故答案为:1750.【点睛】本

19、题考查函数图像信息问题,解题的关键是读懂图像中数据的含义,求出王霞的速度.16、1【分析】根据弧长的计算公式l=,将n及l的值代入即可得出半径r的值【详解】解:根据弧长的公式l ,得到:6 ,解得r1故答案:1【点睛】此题考查弧长的计算,掌握计算公式是解题关键17、【分析】首先确定剪拼之后的四边形是个平行四边形,其周长大小取决于MN的大小然后在矩形中探究MN的不同位置关系,得到其长度的最大值与最大值,从而问题解决【详解】解:画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示图中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2

20、GH=BC(三角形中位线定理),又M1M2N1N2,四边形M1N1N2M2是一个平行四边形,其周长为2N1N2+2M1N1=2BC+2MNBC=6为定值,四边形的周长取决于MN的大小如答图2所示,是剪拼之前的完整示意图,过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半,M是线段PQ上的任意一点,N是线段BC上的任意一点,根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;而MN的最大值等于矩形对角线的长度,即,四边形M1N1N2M2的周长=2BC+2MN=12+2MN,最大值为12+2=12+故答案为

21、:12+【点睛】此题通过图形的剪拼,考查了动手操作能力和空间想象能力,确定剪拼之后的图形,并且探究MN的不同位置关系得出四边形周长的最值是解题关键18、【分析】证明 ,从而求出CD的长度,再求出即可【详解】是斜边上的高 解得(舍去)在 中故答案为:【点睛】本题考查了相似三角形的判定以及三角函数,掌握相似三角形的性质以及判定是解题的关键三、解答题(共78分)19、(1)FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC【分析】(1)首先根据圆周角定理及垂直的定义得到BAD+CAD90,C+CAD90,从而得到BADC,然后利用等弧对等角等知识得到AFBF,从而证得FAFG,判定等

22、腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知DACAGB,推出BADABG,得到F为BG的中点根据直角三角形的性质得到AFBFBG13,求得ADAFDF1358,根据勾股定理得到BD12,AB4,由ABCABD,BACADB90可证明ABCDBA,根据相似三角形的性质即可得到结论【详解】(1)FAG等腰三角形;理由如下:BC为直径,BAC90,ABE+AGB90,ADBC,ADC90,ACD+DAC90,ABEACD,DACAGB,FAFG,FAG是等腰三角形(2)成立,理由如下:BC为直径,BAC90,ABE+AGB90,ADBC,ADC90,ACD+DAC90,AB

23、EACD,DACAGB,FAFG,FAG是等腰三角形(3)由(2)知DACAGB,且BAD+DAC90,ABG+AGB90,BADABG,AFBF,AFFG,BF=GF,即F为BG的中点,BAG为直角三角形,AFBFBG13,DF5,ADAFDF1358,在RtBDF中,BD12,在RtBDA中,AB4,ABCABD,BACADB90,ABCDBA,BC,O的直径BC【点睛】本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角

24、形的判定定理是解题关键20、(1)y=x+3;y=x22x+3;(2)M的坐标是(1,2);(3)P的坐标是(1,)或(1,)或(1,4)或(1,2)【分析】(1)用待定系数法即可求出直线BC和抛物线的解析式;(2)设直线BC与对称轴x1的交点为M,则此时MAMC的值最小把x1代入直线yx3得y的值,即可求出点M坐标;(3)设P(1,t),又因为B(3,0),C(0,3),所以可得BC218,PB2(13)2t24t2,PC2(1)2(t3)2t26t10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标【详解】(1)A(1,0)关于x=1的对称点是(3,0),则B的坐标是(3,0)根据

25、题意得: 解得则直线的解析式是y=x+3;根据题意得: 解得:则抛物线的解析式是y=x22x+3(2)设直线BC与对称轴x1的交点为M,则此时MAMC的值最小把x1代入直线yx3得,y132,M(1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(1,2);(3)如图,设P(1,t),又B(3,0),C(0,3),BC218,PB2(13)2t24t2,PC2(1)2(t3)2t26t10,若点B为直角顶点,则BC2PB2PC2即:184t2t26t10解之得:t2;若点C为直角顶点,则BC2PC2PB2即:18t26t104t2解之得:t4,若点P为直角顶点,则PB2PC2BC

26、2即:4t2t26t1018解之得:t1,t2;P的坐标是(1,)或(1,)或(1,4)或(1,2)【点睛】本题是二次函数的综合题,考查了二次函数的图象与性质,待定系数法求函数的解析式,利用轴对称性质确定线段的最小长度,两点间的距离公式的运用,直角三角形的性质等知识点,熟练掌握二次函数的性质是解题的关键21、AE=6,BE=3.【解析】先根据已知条件求证ABCADE,然后根据相似三角形对应边成比例,代入数值即可求解【详解】AED =C,A为公共角ABCADE又DE=4,BC=12,CD=15,AD=3,AC=15+3=18AE=6,AB=9BE=9-6=3【点睛】本题考查了相似三角形的性质和判

27、定,利用相似三角形对应边成比例即可解题.22、 (1)yx2+6x+5;(2)SPBC的最大值为;存在,点P的坐标为P(,)或(0,5)【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,求出 直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x

28、+2,、联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立和yx2+6x+5并解得:x,即可求出P点;当点P(P)在直线BC上方时,根据PBCBCD求出BPCD,求出直线BP的表达式为:y2x+5,联立yx2+6x+5和y2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:yx2+6x+5,令y0,则x1或5,即点C(1,0);(2)如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:yx+1,设点G(t,t+1),则点P(t,t2+6t+5),SPBCP

29、G(xCxB)(t+1t26t5)t2t6,-0,SPBC有最大值,当t时,其最大值为;设直线BP与CD交于点H,当点P在直线BC下方时,PBCBCD,点H在BC的中垂线上,线段BC的中点坐标为(,),过该点与BC垂直的直线的k值为1,设BC中垂线的表达式为:yx+m,将点(,)代入上式并解得:直线BC中垂线的表达式为:yx4,同理直线CD的表达式为:y2x+2,联立并解得:x2,即点H(2,2),同理可得直线BH的表达式为:yx1,联立并解得:x或4(舍去4),故点P(,);当点P(P)在直线BC上方时,PBCBCD,BPCD,则直线BP的表达式为:y2x+s,将点B坐标代入上式并解得:s5,即直线BP的表达式为:y2x+5,联立并解得:x0或4(舍去4),故点P(0,5);故点P的坐标为P(,)或(0,5)【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.23、(1)k32;(2)菱形ABCD平移的距离为【分析】(1)由题意可得OD5,从而可得点A的坐标,从而可得的值;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x0)的图象D点处,由题意可知D的纵坐标为3,从而可得横坐标,从而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论