版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省黄山市休宁县八年级数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,,的垂直平分线交于点,连接,若的周长为17,则的长为()A.6 B.7 C.8 D.92.下列美丽的图案中,不是轴对称图形的是()A. B. C. D.3.如图,在中,分别是边上的点,若≌≌,则的度数为()A. B. C. D.4.把分式方程化为整式方程正确的是()A. B.C. D.5.如图,在一个三角形的纸片()中,,将这个纸片沿直线剪去一个角后变成一个四边形,则图中的度数为()A.180° B.90 C.270° D.315°6.某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的众数是()最高气温(°C)1819202122天数12232A.20 B.20.5 C.21 D.227.中国首列商用磁浮列车平均速度为,计划提速,已知从地到地路程为360,那么提速后从甲地到乙地节约的时间表示为()A. B. C. D.8.如图,在△ABC中,AB=AC,依据尺规作图的痕迹,判断下列结论错误的是()A.AD⊥BC B.BD=CD C.DE∥AB D.DE=BD9.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月10.如图,已知,下面甲、乙、丙、丁四个三角形中,与全等的是()A.甲 B.乙 C.丙 D.丁二、填空题(每小题3分,共24分)11.探索题:已知(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,(x﹣1)(x4+x3+x2+x+1)=x5﹣1.则22018+22017+22016+…+23+22+2+1的值的个位数是_____.12.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_______.13.在中,,的垂直平分线与所在的直线相交所得到的锐角为,则等于______________度.14.如图,在中,,点在内,平分,连结,把沿折叠,落在处,交于,恰有.若,,则__________.15.如图,,要使,还需添加一个条件是:______.(填上你认为适当的一个条件即可)16.如图,等边的边长为,、分别是、上的点,将沿直线折叠,点落在点处,且点在外部,则阴影部分图形的周长为__________.17.若关于x的方程无解,则m的值是____.18.已知,,,…,若(,均为实数),则根据以上规律的值为__________.三、解答题(共66分)19.(10分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.20.(6分)阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.21.(6分)“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为(米)与时间(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:______;______;______.(2)求线段所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.22.(8分)已知:如图,AB=AC,AD=AE,∠1=∠1.求证:△ABD≌△ACE.23.(8分)如图正比例函数y=2x的图像与一次函数的图像交于点A(m,2),一次函数的图象经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求的面积.24.(8分)一个正方形的边长增加,它的面积增加了,求原来这个正方形的边长.25.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级DCBA人数3a8b分析数据:平均数中位数众数80mn请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?26.(10分)(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据线段垂直平分线的性质可得AD=BD,AB=2AE,把△BCD的周长转化为AC、BC的和,然后代入数据进行计算即可得解.【题目详解】∵DE是AB的垂直平分线,
∴AD=BD,AB=2AE=10,
∵△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=11,
∵AB=AC=10,
∴BC=11-10=1.
故选:B.【题目点拨】此题考查线段垂直平分线的性质.此题比较简单,解题的关键是掌握垂直平分线上任意一点,到线段两端点的距离相等定理的应用.2、A【解题分析】根据轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、D【分析】根据全等三角形的性质求得∠BDE=∠CDE=90°,∠AEB=∠BED=∠CED=60°,即可得到答案.【题目详解】∵≌,∴∠BDE=∠CDE,∵∠BDE+∠CDE=180°,∴∠BDE=∠CDE=90°,∵≌≌,∴∠AEB=∠BED=∠CED,∵∠AEB+∠BED+∠CED=180°,∴∠AEB=∠BED=∠CED=60°,∴∠C=90°-∠CED=30°,故选:D.【题目点拨】此题考查了全等三角形的性质:全等三角形的对应角相等,以及平角的性质.4、C【解题分析】方程两边同乘最简公分母x(x+1),得:2(x+1)-x2=x(x+1),故选C.5、C【分析】根据直角三角形与邻补角的性质即可求解.【题目详解】∵∴∴===故选C.【题目点拨】此题主要考查三角形的求解求解,解题的关键是熟知直角三角形与邻补角的性质.6、C【分析】根据众数的定义求解即可.【题目详解】∵21出现的次数最多,∴则该地区这10天最高气温的众数是21;故答案选C.【题目点拨】此题考查了众数,解题的关键是正确理解题意,抓住题目中的关键语句.7、A【分析】列式求得提速前后从甲地到乙地需要的时间,进一步求差得出答案即可.【题目详解】解:由题意可得:==故选A.【题目点拨】此题考查列代数式,掌握行程问题中的基本数量关系是解决问题的关键.8、D【分析】由尺规作图痕迹可知AD是∠BAC平分线,另一条为AC的垂直平分线,由此即可求解.【题目详解】解:如下图所示,由尺规作图痕迹可知AD是∠BAC平分线,EF是AC的垂直平分线,
又已知AB=AC,∴由等腰三角形的“三线合一”性质可知,AD是底边BC上的高,AD是△ABC的中线,∴AD⊥BC,BD=CD,故选项A和选项B正确,又EF是AC的垂直平分线,∴E是AC的中点,由直角三角形斜边上的中线等于斜边的一半可知,EA=ED,∴∠EAD=∠EDA,又∠EAD=∠BAD,∴∠EDA=∠BAD,∴DEAB,∴选项C正确,选项D缺少已知条件,推导不出来,故选:D.【题目点拨】本题考查了尺规作图角平分线和垂直平分线的作法、等腰三角形的性质等,熟练掌握其作图方法及其性质是解决本题的关键.9、C【解题分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【题目详解】A、极差为:83-28=55,故本选项错误;
B、∵58出现的次数最多,是2次,
∴众数为:58,故本选项错误;
C、中位数为:(58+58)÷2=58,故本选项正确;
D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;
故选C.10、B【分析】根据全等三角形的判定定理作出正确的选择即可.【题目详解】解:A、△ABC和甲所示三角形根据SA无法判定它们全等,故本选项错误;B、△ABC和乙所示三角形根据SAS可判定它们全等,故本选项正确;C、△ABC和丙所示三角形根据SA无法判定它们全等,故本选项错误;D、△ABC和丁所示三角形根据AA无法判定它们全等,故本选项错误;故选:B.【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每小题3分,共24分)11、7【分析】先按照题中的规律对原式进行变形,则原式=,再根据的个位数的规律得出结论即可.【题目详解】原式=的个位数字是2,4,8,6,2……每四个数一循环,所以∴的个位数字为8,∴的个位数字为7,∴的个位数字为7【题目点拨】本题主要考查利用规律对原式进行适当变形,然后再利用的规律找到个位上数字的规律,找到规律是解题的关键.12、28【题目详解】解:把这一组数据从小到大依次排列为20,24,27,28,31,34,38,最中间的数字是28,所以这组数据的中位数是28故答案为:2813、65°或25°【分析】(1)当△ABC是锐角三角形时,根据题目条件得到∠A=50°,利用△ABC是等腰三角形即可求解;(2)当△ABC是钝角三角形时,同理可得即可得出结果.【题目详解】解:(1)当△ABC是锐角等腰三角形时,如图1所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠A=180°-90°-40°=50°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-50°)÷2=65°(2)当△ABC是钝角三角形时,如图2所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠AED+∠ADE=∠BAC∴∠BAC=90°+40°=130°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-130°)÷2=25°∴∠ABC=65°或25°故答案为:65°或25°【题目点拨】本题主要考查的是垂直平分线以及三角形的外角性质,正确的运用这两个知识点是解题的关键.14、【解题分析】如图(见解析),延长AD,交BC于点G,先根据等腰三角形的三线合一性得出,再根据折叠的性质、等腰三角形的性质(等边对等角)得出,从而得出是等腰直角三角形,然后根据勾股定理、面积公式可求出AC、CE、CF的长,最后根据线段的和差即可得.【题目详解】如图,延长AD,交BC于点G平分,,且AG是BC边上的中线由折叠的性质得,即,即是等腰直角三角形,且在中,由三角形的面积公式得即,解得故答案为:.【题目点拨】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.15、或或【分析】由∠1=∠2可得∠AEB=∠AEC,AD为公共边,根据全等三角形的判定添加条件即可.【题目详解】∵∠1=∠2,∴∠AEB=∠AEC,∵AE为公共边,∴根据“SAS”得到三角形全等,可添加BE=CE;根据“AAS”可添加∠B=∠C;根据“ASA”可添加∠BAE=∠CAE;故答案为:BE=CE或∠B=∠C或∠BAE=∠CAE.【题目点拨】本题考查全等三角形的判定,全等三角形的常用的判定方法有SSS、SAS、AAS、ASA、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.熟练掌握全等三角形的判定定理是解题的关键.16、3【分析】根据折叠的性质可得,,则阴影部分图形的周长即可转化为等边的周长.【题目详解】解:由折叠性质可得,,所以.故答案为:3.【题目点拨】本题结合图形的周长考查了折叠的性质,观察图形,熟练掌握折叠的性质是解答关键.17、3【分析】先去分母求出x的解,由增根x=4即可求出m的值.【题目详解】解方程m+1-x=0,解得x=m+1,∵增根x=4,即m+1=4∴m=3.【题目点拨】此题主要考查分式方程的增根,解题的关键是熟知解分式方程的方法.18、【分析】观察所给的等式,等号右边是,,,…,,据此规律可求得的值,从而求得结论.【题目详解】观察下列等式,,,…,∴,∵,∴,,∴.故答案为:.【题目点拨】本题主要考查的是二次根式的混合运算以及归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.三、解答题(共66分)19、(1)证明见解析;(2)BE=AF,证明见解析.【解题分析】分析:(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.详(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.点睛:本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA证出△BDE≌△ADF;(2)根据全等三角形的判定定理ASA证出△EDB≌△FDA.20、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,易得:△OKQ≌△QHP,设H(2,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(2,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+2,进而即可得到结论.【题目详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=1,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=12,∵BH⊥DC,∴BD==2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(2,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=2﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(2,2),∴M(2,1),设直线QM的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:,解得:∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=2,∴y=﹣x+2,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+2,故答案为:y=﹣x+2.【题目点拨】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.21、(1)10,15,200;(2);(3)距图书馆的距离为米【分析】(1)根据爸爸的速度和行驶的路程可求出a的值,然后用a+5即可得到b的值,利用路程除以时间即可得出m的值;(2)用待定系数法即可求线段所在直线的解析式;(3)由题意得出直线OD的解析式,与直线BC的解析式联立求出交点坐标,再用总路程减去交点纵坐标即可得出答案.【题目详解】(1)(分钟)(分钟)米/分故答案为:10,15,200;(2)设线段所在直线的解析式为因为点在直线BC上,代入得解得线段所在直线的解析式为(3)因为小军的速度是120米/分,所以直线OD的解析式为令,解得所以距图书馆的距离为(米)【题目点拨】本题主要考查一次函数的应用,能够从图象中获取有效信息是解题的关键.22、证明见解析.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【题目详解】证明:∵∠1=∠1,∴∠EAC=∠BAD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年口腔医疗管理公司院感防控培训管理制度
- 广西河池市宜州区2024-2025学年八年级上学期期末生物试题(含答案)
- 护理部护理服务特色汇报
- 紧急护理人力资源应急响应机制
- 债权人公告制度
- 信贷员尽职免责制度
- 住院总医师岗位制度
- 企业询价制度
- 成功案例|如何进行工时制度改革与定岗定编?-华恒智信车辆检测维修企业降本增效实践案例解析
- 产品开发委托制度
- 2026湖北随州农商银行科技研发中心第二批人员招聘9人笔试模拟试题及答案解析
- 2025年-辅导员素质能力大赛笔试题库及答案
- 2025年老年娱乐行业艺术教育普及报告
- 2025年抗菌药物合理应用培训考核试题附答案
- 2025年度临床医生个人述职报告
- 2026年烟花爆竹安全生产法律法规知识试题含答案
- 2026年《必背60题》 计算机科学与技术26届考研复试高频面试题包含详细解答
- 2026年无锡商业职业技术学院单招职业技能笔试备考试题带答案解析
- 2026年初二物理寒假作业(1.31-3.1)
- 2025秋人教版七年级上册音乐期末测试卷(三套含答案)
- 2025-2030中国工业硅行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论