2024届江苏省淮州中学数学高二下期末检测试题含解析_第1页
2024届江苏省淮州中学数学高二下期末检测试题含解析_第2页
2024届江苏省淮州中学数学高二下期末检测试题含解析_第3页
2024届江苏省淮州中学数学高二下期末检测试题含解析_第4页
2024届江苏省淮州中学数学高二下期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省淮州中学数学高二下期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某工厂生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据:根据相关检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为,则这组样本数据的回归直线方程是()A. B. C. D.2.在一组数据为,,…,(,不全相等)的散点图中,若这组样本数据的相关系数为,则所有的样本点满足的方程可以是()A. B.C. D.3.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A.0795 B.0780 C.0810 D.08154.已知随机变量,且,则()A.1.25 B.1.3 C.1.75 D.1.655.已知复数z=2+i,则A. B. C.3 D.56.若输入,执行如图所示的程序框图,输出的()A.10 B.16 C.20 D.357.若函数在区间上的图象如图所示,则的值()A. B.C. D.8.函数f(x)=|x|-ln|x|,若[f(x)]2-mf(x)+3=0有A.(23,4) B.(2,4) C.(2,29.在中,,,,AD为BC边上的高,O为AD的中点,若,则A.1 B. C. D.10.已知甲口袋中有个红球和个白球,乙口袋中有个红球和个白球,现从甲,乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为,则()A. B. C. D.11.函数f(x)=的图象大致为()A. B.C. D.12.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的定义域为________.14.设,则二项式的展开式中含项的系数为__________.15.有一棱长为的正方体框架,其内放置气球,使其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为____________.16.若的展开式中的系数是,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P、种黄瓜的年收益Q与投入a(单位:万元)满足P=80++120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?18.(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知圆的直角坐标方程为.求圆的极坐标方程;设圆与圆:交于两点,求.19.(12分)已知.(1)若,求.(2)设复数满足,试求复数平面内对应的点到原点距离的最大值.20.(12分)近年来,人们对食品安全越来越重视,有机蔬菜的需求也越来越大,国家也制定出台了一系列支持有机肥产业发展的优惠政策,鼓励和引导农民增施有机肥,“藏粮于地,藏粮于技”.根据某种植基地对某种有机蔬菜产量与有机肥用量的统计,每个有机蔬菜大棚产量的增加量(百斤)与使用有机肥料(千克)之间对应数据如下表:使用有机肥料(千克)345678910产量增加量(百斤)2.12.93.54.24.85.66.26.7(1)根据表中的数据,试建立关于的线性回归方程(精确到);(2)若种植基地每天早上7点将采摘的某有机蔬菜以每千克10元的价格销售到某超市,超市以每千克15元的价格卖给顾客.已知该超市每天8点开始营业,22点结束营业,超市规定:如果当天16点前该有机蔬菜没卖完,则以每千克5元的促销价格卖给顾客(根据经验,当天都能全部卖完).该超市统计了100天该有机蔬菜在每天的16点前的销售量(单位:千克),如表:每天16点前的销售量(单位:千克)100110120130140150160频数10201616141410若以100天记录的频率作为每天16点前销售量发生的概率,以该超市当天销售该有机蔬菜利润的期望值为决策依据,说明该超市选择购进该有机蔬菜110千克还是120千克,能使获得的利润更大?附:回归直线方程中的斜率和截距的最小二乘估计公式分别为:,.参考数据:,.21.(12分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为,求.22.(10分)在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由题意可知,,线性回归方程过样本中心,所以只有C选项满足.选C.【题目点拨】线性回归方程过样本中心,所以可以代入四个选项进行逐一检验.2、A【解题分析】

根据相关系数的概念即可作出判断.【题目详解】∵这组样本数据的相关系数为,∴这一组数据,,…线性相关,且是负相关,∴可排除D,B,C,故选A【题目点拨】本题考查了相关系数,考查了正相关和负相关,考查了一组数据的完全相关性,是基础的概念题.3、A【解题分析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为所以抽取的第40个数为选A.点睛:本题考查系统抽样概念,考查基本求解能力.4、C【解题分析】

利用正态分布的图像和性质求解即可.【题目详解】由题得,所以.故选:C【题目点拨】本题主要考查正态分布的图像和性质,考查指定概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、D【解题分析】

题先求得,然后根据复数的乘法运算法则即得.【题目详解】∵故选D.【题目点拨】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题..6、B【解题分析】

第一次循环,,第二次循环,,第三次循环,,结束循环,输出,故选B.7、A【解题分析】

根据周期求,根据最值点坐标求【题目详解】因为,因为时,所以因为,所以,选A.【题目点拨】本题考查由图像求三角函数解析式,考查基本分析求解能力,属基础题.8、A【解题分析】

方程有8个不相等的实数根指存在8个不同x的值;根据函数f(x)的图象,可知方程[f(x)]2-mf(x)+3=0必存在2个大于1【题目详解】∵f(x)=∵f(-x)=f(x),∴函数f(x)为偶函数,利用导数可画出其函数图象(如图所示),若[f(x)]2-mf(x)+3=0有8个不相等的实数根⇔关于∴Δ=【题目点拨】与复合函数有关的函数或方程问题,要会运用整体思想看问题;本题就是把所求方程看成是关于f(x)的一元二次方程,再利用二次函数根的分布求m的范围.9、D【解题分析】

通过解直角三角形得到,利用向量的三角形法则及向量共线的充要条件表示出利用向量共线的充要条件表示出,根据平面向量就不定理求出,值.【题目详解】在中,又所以为AD的中点故选D.【题目点拨】本题考查解三角形、向量的三角形法则、向量共线的充要条件、平面向量的基本定理.10、A【解题分析】

先求出的可能取值及取各个可能取值时的概率,再利用可求得数学期望.【题目详解】的可能取值为.表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故.表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故.表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故.所以.故选A.【题目点拨】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布,也可以直接利用公式求期望.11、D【解题分析】

根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【题目详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【题目点拨】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.12、C【解题分析】

根据程序图,当x<0时结束对x的计算,可得y值.【题目详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【题目点拨】本题考查程序框图,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】的定义域是,,故得到函数定义域为取交集,故答案为.14、192【解题分析】因为,所以,由于通项公式,令,则,应填答案。15、【解题分析】

气球表面积最大时,球与正方体的各棱相切.【题目详解】由题意要使气球的表面积最大,则球与正方体的各棱相切,∴球的直径等于正方体的面对角线长,即为,半径为,球的表面积为.故答案为:.【题目点拨】本题考查球与正方体的切接问题,解题时要注意分辩:球是正方体的内切球(球与正方体各面相切),球是正方体的棱切球(球与正方体的所有棱相切),球是正方体的外接球(正方体的各顶点在球面上).16、1【解题分析】

先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式中的项的系数,再根据的系数是列方程求解即可.【题目详解】展开式的的通项为,令,的展开式中的系数为,故答案为1.【题目点拨】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)甲大棚万元,乙大棚万元时,总收益最大,且最大收益为万元.【解题分析】试题分析:(1)当甲大棚投入万元,则乙大棚投入万元,此时直接计算即可;(2)列出总收益的函数式得,令,换元将函数转换为关于的二次函数,由二次函数知识可求其最大值及相应的值.试题解析:(1)∵甲大棚投入50万元,则乙大棚投入150万元,∴(2),依题得,即,故.令,则,当时,即时,,∴甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元.考点:1.函数建模;2.二次函数.18、;4.【解题分析】

(1)直接通过即可得到答案;(2)可先求出圆的标准方程,求出两圆交点,于是可得答案.【题目详解】根据题意,可得圆的极坐标方程为:即;圆的直角坐标方程为:,联立,两式相减,可得,即代入第一条式子,可解得或,于是.【题目点拨】本题主要考查直角坐标方程和极坐标方程的互化,圆的交点计算,意在考查学生的转化能力,计算能力,难度中等.19、(1)(2)【解题分析】

(1)复数相等时,实部分别相等,虚部分别相等;(2)由判断出对应的轨迹,然后分析轨迹上的点到原点距离最大值.【题目详解】解:(1),,(2)设,即,即在平面对应点的轨迹为以为圆心,以1为半径的圆,【题目点拨】本题考查复数相等以及复数方程对应的轨迹问题,难度一般.以复数对应的点为圆心,以为半径的圆的复数方程是:.20、(1)(2)选择购进该有机蔬菜120千克,能使得获得的利润更大【解题分析】

(1)求出,,结合题目所给数据,代入回归直线方程中的斜率和截距的最小二乘估计公式中,即可求出线性回归方程;(2)分别计算出购进该有机蔬菜110千克利润的数学期望和120千克利润的数学期望,进行比较即可得到答案。【题目详解】(1),因为,所以,,所以关于的线性回归方程为.(2)若该超市一天购进110千克这种有机蔬菜,若当天的需求量为100千克时,获得的利润为:(元);若当天的需求量大于等于110千克时,获得的利润为:(元)记为当天的利润(单位:元),则的分布列为450550数学期望是若该超市一天购进120千克这种有机蔬菜,若当天的需求量为100千克时,获得的利润为:(元);若当天的需求量为110千克时,获得的利润为:(元);若当天的需求量大于或等于120千克时,获得的利润为:(元)记为当天的利润(单位:元),则的分布列为400500600数学期望是因为所以选择购进该有机蔬菜120千克,能使得获得的利润更大.【题目点拨】本题考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论