吉林省长春市榆树市一中2026届高一数学第一学期期末统考模拟试题含解析_第1页
吉林省长春市榆树市一中2026届高一数学第一学期期末统考模拟试题含解析_第2页
吉林省长春市榆树市一中2026届高一数学第一学期期末统考模拟试题含解析_第3页
吉林省长春市榆树市一中2026届高一数学第一学期期末统考模拟试题含解析_第4页
吉林省长春市榆树市一中2026届高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市榆树市一中2026届高一数学第一学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A. B.C. D.2.已知函数,若存在不相等的实数a,b,c,d满足,则的取值范围为()A B.C. D.3.已知集合,

,则(

)A. B.C. D.4.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,将角的终边按顺时针方向旋转后经过点,则()A. B.C. D.5.已知函数,且在上的最大值为,若函数有四个不同的零点,则实数a的取值范围为()A. B.C. D.6.等边三角形ABC的边长为1,则()A. B.C. D.7.下列函数中,是偶函数,且在区间上单调递增的为()A. B.C. D.8.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.9.若,则的最小值是()A.1 B.2C.3 D.410.已知扇形周长为,圆心角为,则扇形面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是__________12.已知,且,则实数的取值范围为__________13.正方体中,分别是,的中点,则直线与所成角的余弦值是_______.14.已知,,且,则的最小值为______15.若不等式的解集为,则______,______16.命题“”的否定为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某城市上年度电价为0.80元/千瓦时,年用电量为千瓦时.本年度计划将电价降到0.55元/千瓦时~0.7元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时),经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为.试问当地电价最低为多少元/千瓦时,可保证电力部门的收益比上年度至少增加20%.18.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.(1)求;(2)求的值.19.果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.149161(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?20.如图,已知圆的圆心在坐标原点,点是圆上的一点(Ⅰ)求圆的方程;(Ⅱ)若过点的动直线与圆相交于,两点.在平面直角坐标系内,是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由21.已知.(1)求的最小正周期;(2)求的单调增区间;(3)当时,求的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设,,∴,,,∴.【考点】向量数量积【名师点睛】研究向量的数量积问题,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简.平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是将“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来2、C【解析】将问题转化为与图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【详解】由题设,将问题转化为与的图象有四个交点,,则在上递减且值域为;在上递增且值域为;在上递减且值域为,在上递增且值域为;的图象如下:所以时,与的图象有四个交点,不妨假设,由图及函数性质知:,易知:,,所以.故选:C3、D【解析】因,,故,应选答案D4、A【解析】根据角的旋转与三角函数定义得,利用两角和的正切公式求得,然后待求式由二倍公式,“1”的代换,变成二次齐次式,转化为的式子,再计算可得【详解】解:将角的终边按顺时针方向旋转后所得的角为,因为旋转后的终边过点,所以,所以.所以.故选:A5、B【解析】由在上最大值为,讨论可求出,从而,若有4个零点,则函数与有4个交点,画出图象,结合图象求解即可【详解】若,则函数在上单调递增,所以的最小值为,不合题意,则,要使函数在上的最大值为如果,即,则,解得,不合题意;若,即,则解得即,则如图所示,若有4个零点,则函数与有4个交点,只有函数的图象开口向上,即当与)有一个交点时,方程有一个根,得,此时函数有二个不同的零点,要使函数有四个不同的零点,与有两个交点,则抛物线的图象开口要比的图象开口大,可得,所以,即实数a的取值范围为故选:B【点睛】关键点点睛:此题考查函数与方程的综合应用,考查二次函数的性质的应用,考查数形结合的思想,解题的关键是由已知条件求出的值,然后将问题转化为函数与有4个交点,画出函数图象,结合图象求解即可,属于较难题6、A【解析】直接利用向量的数量积定义进行运算,即可得到答案;详解】,故选:A7、D【解析】根据基本初等函数的奇偶性及单调性逐一判断.【详解】A.在其定义域上为奇函数;B.,在区间上时,,其为单调递减函数;C.在其定义域上为非奇非偶函数;D.的定义域为,在区间上时,,其为单调递增函数,又,故在其定义域上为偶函数.故选:D.8、C【解析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.9、C【解析】采用拼凑法,结合基本不等式即可求解.【详解】因为,,当且仅当时取到等号,故的最小值是3.故选:C10、B【解析】周长为则,代入扇形弧长公式解得,代入扇形面积公式即可得解.【详解】由题意知,代入方程解得,所以故选:B【点睛】本题考查扇形的弧长、面积公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用函数的图象变换规律,先放缩变换,再平移变换,从而可得答案【详解】将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数的图象;再将的图象向左平移个单位,得到的图象对应的解析式是的图象,故答案为:12、【解析】,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性13、【解析】结合异面直线所成角的找法,找出角,构造三角形,计算余弦值,即可【详解】连接,而,所以直线与所成角即为,设正方体边长为1,则,所以余弦值为【点睛】考查了异面直线所成角的计算方法,关键得出直线与所成角即为,难度中等14、6【解析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.15、①.②.【解析】由题设知:是的根,应用根与系数关系即可求参数值.【详解】由题设,是的根,∴,即,.故答案为:,.16、【解析】根据特称命题的否定为全称命题求解.【详解】因为特称命题的否定为全称命题,所以“”的否定为“”,故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.【解析】根据题意列新增用电量,再乘以单价利润得收益,列不等式,解一元二次不等式,根据限制条件取交集得电价取值范围,即得最低电价试题解析:设新电价为元/千瓦时,则新增用电量为千瓦时.依题意,有,即,整理,得,解此不等式,得或,又,所以,,因此,,即电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.18、(1);(2).【解析】(1)根据任意角三角函数的定义即可求解tanθ;(2)分式分子分母同时除以cos2θ化弦为切即可.【小问1详解】∵角的终边经过点,由三角函数的定义知,;【小问2详解】∵,∴.19、(1)更适合作为与的函数模型(2)果树数量为时年利润最大【解析】(1)将点代入和,求出两个函数,然后将和代入,看哪个算出的数据接近实际数据哪个就更适合作为与的函数模型.(2)根据(1)可得,利用二次函数的性质求最大利润.【小问1详解】①若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,与表格中的和相差较大,所以不适合作为与的函数模型.②若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,刚好与表格中的和相符合,所以更适合作为与的函数模型.【小问2详解】由题可知,该果园最多120000棵该吕种果树,所以确定的取值范围为,令,则经计算,当时,取最大值(万元),即,时(每亩约38棵),利润最大.20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)设圆的方程为,将代入,求得,从而可得结果;(Ⅱ)先设,由可得,再证明对任意,满足即可,,则利用韦达定理可得,,由角平分线定理可得结果.【详解】(Ⅰ)设圆的方程为,将代入,求得,所以圆的方程为;(Ⅱ)先设,,由由(舍去)再证明对任意,满足即可,由,则则利用韦达定理可得,化为所以,由角平分线定理可得,即存在与点不同的定点,使得恒成立,.【点睛】本题主要考查待定系数法求圆方程及韦达定理、直线和圆的位置关系及曲线线过定点问题.属于难题.探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论