2025-2026学年七年级数学期中模拟卷(湖北武汉专用人教版)(全解全析)_第1页
2025-2026学年七年级数学期中模拟卷(湖北武汉专用人教版)(全解全析)_第2页
2025-2026学年七年级数学期中模拟卷(湖北武汉专用人教版)(全解全析)_第3页
2025-2026学年七年级数学期中模拟卷(湖北武汉专用人教版)(全解全析)_第4页
2025-2026学年七年级数学期中模拟卷(湖北武汉专用人教版)(全解全析)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级数学上学期期中模拟卷(湖北武汉专用)

全解全析

(考试时间:120分钟,分值:120分)

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.【回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡

皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题R上。写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024,七上第一■四章。

5.难度系数:0.65。

第一部分(选择题共30分)

一、选择题(本大题共10小题,每小题3分,共30分)

1.-2025的相反数是().

A.-2025B.2025C.—^―

20252025

【答案】B

【分析】本题主要考查相反数的概念,解题的关键是理解。的柞反数为Y.

根据。的相反数为Y直接求解即可.

【详解】由。的相反数为一〃,

所以-2025的相反数是2025.

故选:B.

2.下列各式计算正确的是()

A.6a+a=6a2B.-2a+5b=3ab

C.4W2H-2mn2=2mnD.ab2-5b2a=-4a/?2

【答案】D

【分析】本题考查合并同类项,根据合并同类项的运算法则逐项判断即可.

【详解】解:A、6a+a=7a,原计算错误,不符合题意;

B、-2”和5〃不是同类项,不能合并,原il算错误,不符合题意;

C、4〃/〃和2〃/不是同类项,不能合并,原计算错误,不符合题意;

D、ab2-5b2a=-4ab2,原计算正确,符合题意;

故选:D.

3.下列说法正确的是()

A.单项式乃1歹的系数是oB.单项式的次数是五次

C.多项式/+X是三次二项式D.4只),与6^3是同类项

【答案】B

【分析】本题考查了单项式、多项式和同类项的相关定义,属于基础题目,熟知概念是关键.

根据单项式的系数和次数的定义、多项式的次数和项数的定义以及同类项的定义逐项判断即得答案.

【详解】解:A、单项式K3y的系数是万,故本选项说法错误,不符合题意;

B、单项式的次数是五次,故本选项说法正确,符合题意;

C、多项式/+x是二次二项式,故本选项说法错误,不符合题意;

D、4/歹与693不是同类项,故本选项说法错误,不符合题意:

故选:B.

4.在下列各数中-(+3)、-2\(-1-)\—二、(-1)2026、-|-4|,负数有()

34

A.2个B.3个C.4个D.5个

【答案】C

【分析】本题考查了负数,解决本题的关键是先把各式进行化简.先化简,再根据小于0的数为负数,即

可解答.

【详解】解:一(+3)=-3,_22=-4,(4)2=^(-1/26=1,-|-4|=-4,

3944

负数有:—(+3)、9?、,-Ml,共4个.

4

故选:C.

5.有下列四个算式:①(一5)+(+3)=-8;②一(一2)x(-3)=6;③-5)=1^④一3子,g="其

中,正确的有()

A.0个B.1个C.2个D.3个

【答案】C

【分析】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.

第①个式子根据有理数的加法可以计算出正确的结果;

第②个式子根据有理数的乘法可以计算出正确的结果;

第③个式子根据有理数的加法可以计算出正确的结果;

第④个式子根据有理数的除法可以计算出正确的结果.

【详解】(5)I(I3)-(53)-2,故①不正确;

-(-2)X(-3)=-(2X3)=-6,故②不正确;

-3«T)=-3X(-3)=9,故④正确;

综上可知,正确的有③④.

故选:C.

6.把有理数〃代入|。+4卜10得到修,称为第一次操作;再将《作为。的值代入|。+4卜10得到生,称为第

二次操作;…….若。=-8,则经过第2025次操作后得到的结果是()

A.-2B.-6C.-8D.-10

【答案】B

【分析】本题考查了数字的变化类,找到变化规律是解题的关键.先根据题干中的式子得到规律,再代入

求解.

【详解.】解:若。=一8,

则"-8+4|-10=-6,

a2=|-6+4|-10=—8,

4=|-8+4|-10=-6,

%=|-6+4|-10=-8,

a5=|-8+4|-10=-6,

«6=|-6+4|-10=-8,

%二|-8+4|-10=-6,

从第1次操作开始,以-6,-8这两个数不断循环出现,

2025+2=1012…1,

•••生025=-6,

故选:B.

7.已知出人互为相反数,c,4万为倒数,用的绝对值为I.x是数轴卜到原点的距离为I的点所表示的数.

则产2°-cd+空,+〃1的值为(:)

cd

A.3B.0或-2C.1D.0或2

【答案】B

【分析】本题考查了倒数、相反数、绝对值、数轴及有理数的混合运算等知识,

先根据相反数、绝对值、倒数及数轴的相关知识,确定。+氏〃、〃?、x的值,再代入计算.

【洋解】解:•.•访》互为相反数,c,d互为倒数,,〃的绝对值为1,X是数轴上到原点的距离为1的点所表

示的数一

a+b=0,cd=hm=±1,x=±\.

又•.•(±1产°=1,

.,.当m=l时,

x20-0-ct/+^^+w-l=1-1+0+1-1=0,

cd

.,.当加=-1时,

x2020-cd+^-+m-\=\-\+0-\-\=-2,

cd

故选:B.

8.根据图中数字的排列规律,在第⑨个图中,a-b-c的值是(:)

①②③④⑨

A.-514B.-512C.254D.256

【答案】C

【分析】本题考查图形中的数字规律问题,含乘方的有理数的混合运算,根据图形中的数字,抽象概括出

数字规律是解题的关键.

先找到三角形每个位置上的数字规律,确定第⑨个图中的数字,再进行计算即可.

【详解】解:设三角形左上位置的数字为:4,右上位置上的数字为:",下方位置上的数字为:%,由

图可知:

=-2=(-1)'x2',

22

a2=4=(-l)x2,

33

a3=-8=(-l)x2,

44

aA=16=(—I)x2

••.可=(-1)"2",

:.a=%=(-1)9X29=-512;

=0=(-1)^2,+2,

22

b2=6=(-1)X2+2,

33

Z>3=-6=(-1)X2+2,

44

ftd=18=(-l)x2+2

.•也=(—1)"2"+2'

.­./?=^=(-1)\29+2=-510;

q=-l=(7),2。,

1

c2=2=(—1)x2,

32

C3=-4=(-1)X2,

—4x

c4=8=(l)

・・£=(-l)"2f

>s

c=c9=(—1)x2=—256;

.•.a-6-c=-512+510+256=254:

故选C.

9.有理数”,b,c在数轴上对应的点的位置如图所示,则下列冬式正确的个数有()

I«Ib

①abc>0;(2)a-b+c<0:③—+—+=-1(4)|t/4-Z>|-|/)-c|+|d-c|=-2c.

bc0a

A.4个B.3个C.2个D.1个

【答案】B

【分析】此题考查了利用数轴解决实数的运算符号确定与绝对值的化简能力,关键是能根据数轴确定各数

的符号、大小.

由数釉确定。、b、。的符号与大小,根据实数的运算、绝对值知识进行辨别即可.

【详解】解:由数轴可得,b<c<oq,且网>|4>同,

.•.。加>0,故①正确;

a-b+c>0,故②不正确;

@+(+@=l+(T)+(T)=T,故③正确;

ac

\a-¥b\-\b-c\+\a-c\=-a-b+b-c+a-c=-2c,故④正确;

正确的有3个.

故选:B.

10.二维码是用某种特定的几何图形按一定规律在平面分布的、黑白相间的、记录数据符号信息的图形(如

图I).某校学生利用二维码建立了一个身份识别系统,图2是其个学生的身份识别图案,其中第一行和第

二行可分别转换为该学生的班级产号和学号.黑色小正方形表示1,白色小止方形表示0,将每一行数字从

左到右依次记为。、b、c、d,则〃x23+/)x22+cx2i+d为该行所表示的数.例如:图2中第一行数字从左

到右依次为0、1、0、1,计算0x23+1x2:+0x7+1=5,表示该生为5班学生.请判断下列选项中表示2

班5号学生的识别图案是()

【分析】本题考查了含乘方的有理数的混合运算的应用,根据给定的计算方法,逐一进行计算,判断即可.

【详解】解:A.0X23+1X22+1X2,+1=7,1X23+0X22+0X2*+0=8,班级和学号都不符合题意,故该选

项不符合题意;

B.0X23+1X22+0X2,+1=5,1X23+0x22+1x2'+0=10,班级和学号都不符合题意,故该选项不符合题

意;

C.0X23+0X22+0X2'+1=1,l>:23+0x22+lx21+0=10,班级和学号都不符合题意,故该选项不符合题

意;

D.0X2J+0X22+1X2'+0=2,0x23+lx22+0x2'+1=5.班级和学号都符合题意,故该选项符合题意;

故选:D.

第二部分(非选择题共90分)

二、填空题(本大题共6小题,每小题3分,共18分)

23

11.比较大小:一石—--(填“〈”或“=

【答案】>

【分析】本题主要考查有理数比较大小,掌握有理数的大小比较原则是解题的关键.根据负数比较大小,

绝对值大的反而小即可求出结果.

22839

【详解】解:V

33-124412

89

-v—,

1212

23

<,

34

_2_3

~3>-4

故答案为:>.

12.一个两位数的个位数字是由,十位数字是〃,列式表示这个两位数是.

【答案】10/I+/M

【分析】本题考查的是列代数式,根据两位数可表示为十位上的数字乘以10,再加上个位上的数字,即可

得到答案.

【详解】解:一个两位数的个体数字是〃z,卜位数字是〃,这个两位数是10〃+〃?.

故答案为:10〃+〃?.

13.地球上水(包括大气水、地表水和地下水)的总体积约为14.2亿kn?.将数据14.2亿用科学记数法表示

为•

【答案】1.42x109

【分析】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键:科学记数法的表示为axlO”的形式,

其中1句h<10,〃为整数.确定〃的值时,要看把原数变成a时,小数点移动了多少位,〃的绝对值与小数

点移动的位数相同.当原数绝对值大于或等于10时,〃是正整数;当原数的绝对值小于1时,〃是负整数.

【详解】解:将14.2亿用科学记数法表示为1.42x10%

故答案为:1.42x101

14.多项式:户-(〃?+4)x-ll是关于x的四次二项式,则〃?的值是.

【答案】-1

【分析】此题主要考查了多项式,正确掌握多项式的次数与系数确定方法是解题关键.

直接利用多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有。个单

项式,次数是从那么这个多项式就叫b次。项式,进而得出〃?的值.

【详解】解:•.一/-(〃?+4)工-11是关于X的四次二项式,

.•.同=4,〃?+4=0.

解得JM=-4.

故答案为:-4.

2

15.对任意有理数X、yt定义新运算“㊉"如下:xey=x+xy-2y.例:

3e2=32+3x2-2x2=9+6-4=l1.若*b满足w+3|+3-5-=0,则。㊉/)=.

【答案】-16

【分析】本题考查有理数的混合运算、新定义,熟练掌握运算法则是解答本题的关键.根据

|4+3|+(b-5)2=0,可以得到*b的值,然后根据x«)y=/+xy_2y,即可求得所求式子的值.

【详解】解:•.•|。+3|+(6-5)2=0,

.,.4+3=0,力—5=0,

解得〃=-3,b=5,

:♦a㊉b=a'+ab-2b

=(-3)2+(-3)X5-2X5

=9+(-3)x5-2x5

=9+(-15)-10

=-16,

故答案为:-16.

16.将2,-4,6,-8,10,-12,14,-16分别填入图中的圆圈内,使每个正方形顶点处4个数字之和与

每条斜线上4个数字之和都相等,且则x-y的值为.

【答案】-6或T4

【分析】本题主要考查了整式加减的应用.根据每个正方形顶点处4个数字之和与每条斜线上4个数字之

和都相等可得T6+10+14=10+x+y,因此x+y=-2,结合图中已填的数字和可得x,y的值,即可

解答.

【详解】解:・每个止方形顶点处4个数字之和与每条斜线上4个数字之和都相等,

.I6+l0+14=10+x+y,

x4-y=-2,

•:x<y,

A-=-4,y=2或x=-8,y=6,

.••当x=-4,y=2时,x-y=-4-2=-6;

当1=-8,y=6时,x-y=-S-6=-\4,

.•.x-y的值为-6或-14.

故答案为:-6或T4.

三、解答题(第17、18、19、20、21题,每题8分;第22,23题,每题10分;第24题12分;共8

小题,共72分)

17.计算:

⑴一(一2八(2)(;+■|一/岛)

【答案】(1)-2

⑵-45

【分析】此题考查了有理数的混合运算,熟练掌握有理数的运算法则和混合运算顺序是关键.

(1)先计算乘方,再计算乘除,最后计算加减法即可;

(2)除法变为乘法后,利用乘法分配律进行解答即可.

【详解】(1)解:-2*8-卜(-2『

=-8-5-8——x4

4

=-1-1

=-2

(2)尚

=(l+rn)x(-36)

=1X(_36)+1X(-36)-^X(-36)

=-18-30+3

=-45

18.先化简,再求值:(5%2一5-+/)一13号+2(;、2-个)+:/,其中x=],y=_2.

【答案】Y+g1v,;7

【分析】本题考查了整式的加减一化简求值,先去括号,再合并同类项即可化简,最后代入X=1,y=-2

计算即可得解,熟练掌握运算法则是解此题的关键.

【详解】解:^x2-5xy+y23xy+2^x2-xy^+^y2

32V2a212

=-x-5xy+y+3xy-2—x-x)f\--y~2

3,12

=-x2-5xy+y2+3xy——x2+2xy——y2

223

=/)+1/2,

J

当x=l,y=-2时,原式=F+gx(—2)2=]+g=g.

19.已知4=3/6-2加+成,晓风错将“24-8”看成“24+8”,算得结果C=4。%-3加+4成.

(1)计算B的表达式;

(2)求正确的结果的表达式;

(3)晓华说(2)中的结果的大小与。的取值无关,对吗?若。=:,求(2)中代数式的值.

X5

【答案】⑴-2a%+加+2abc

(2)8a2b-5而2

(3)结果的大小与。的取值无关,0

【分析】本题主要考查整式的加减,涉及的知识有:去括号、合并同类项,熟练掌握运算法则是解题的关

键;

(1)由24+8=61得8=C-2A,将C、力代入计算可得;

(2)将44代入24-5计算即可;

(3)由化简后的代数式中无字母。可知莫值与。无关,将。、6的值代入计算即可.

【详解】(1)解:・;24+B=C

:.B=C-2A

=4a2b-3加+4abc-2(3a2b-2ab2+abc)

=4a~b-3ab~+4abe-6a'b+4ab~-2abc

=-2a2b+ab2+2abe.

故6的表达式为-2a%+a"+2"c.

(2)解:2A-B=2(3a2b-lab2+abc)-(~2a2b+ab2+2abc)

=6a'b-4ab~+2ahc+2a2b-ab~-lahc

=8/6一5加.

故正确的结果的表达式为8a5a/.

(3)解:由(2)得2/i-B=8a'b-5ab'

・••代数式中无字母c

・••其值与。无关是对的

将代入得:

o5

2A-B=Sa2b-5加=8x(I)2x(l)-5x(l)x(~)2=-——-=0.

85854040

ab

20.对于任意数a,b,c,d,定义=ad-hc.

ca

23

⑴求_54的值;

abab-a2,b1-ab2,,,/,一

⑵若,.=6,=4,求lv/+〃的值•

12b~-ab1

【答案】(1)23

(2)2

【分析】本题考查了有理数的混合运算和代数式求值,整式的加减运算,理解定义是解答此题的关键.

(1)利用新定义列式计算即可;

⑵利用新定义得到2"—(融―叫=6,—2(〃-")=4,,然后把两式相加消去M得到/+〃的

值.

ab

【详解】⑴\d"d-bc

3

=2x4-3x(-5)=23;

4

ah-a1b2-ab2

(2)•・•2S=4,

b2-ab1

.­.2ab-^ah-a2^=6,-ah^-2^b2-ab^=4,

即『+"=6①,b2-ab=-4②,

①+②得/+〃=2.

21.近几年,我国新能源汽车行业发展迅猛.小美家新换了一辆新能源纯电动汽车,她记录了这辆汽车连

续7天每天行驶的路程(如下表所示).以30千米为标准,多于30千米的记为“+”,不足30千米的记为

“一”,刚好30千米的记为“0”.

第一天第二天第三天第四天第五天第六天第七天

路程/千米+4-110+15-5+30+12

(1)小美家的新能源纯电动汽车这7天中行驶路程超过40千米的有一天.

(2)求小美家的新能源纯电动汽车这7天行驶的总路程.

(3)己知燃油车每行驶100千米需用汽油9升,汽油价7.2元/升,而新能源纯电动汽车每行驶100千米的耗

电量为15千瓦时,电的价格为03元/千瓦时.求小美家新能源纯电动汽车这7天的行驶总路程的耗电费用

比原来燃油车行驶相同路程的耗油费用节省的金额.

【答案】⑴3

(2)小美家的新能源纯电动汽车这7天行驶的总路程为255千米

(3)小美家新能源纯电动汽车这7天的行驶总路程的耗电费用比原来燃油车行驶相同路程的耗油费用节省了

134.64元

【分析】本题主要考查了正负数的实际应用,有理数的四则混合运算的应用,正确计算是解题的关键.

(1)分别计算这7天中每一天的行驶路程与40千米比较即可;

<2)用标准乘以天数,再加_L表格中的数据之和,进行求解即可;

(3)分别计算新能源纯电动汽车和燃油车的耗电和耗油费用,可作差即可.

【详解】(1)解:第一天:30+4=34<40;

第二天:30-11=19<40;

第三天:30+0=30<40;

第四天:30+15=45>40;

第五天:30-5=25<40;

第六天:30+30=60>40:

第七天:30+12=42>40,

•••小美家的新能源纯电动汽车这7天中行驶路程超过40千米的有3天,

故答案为:3;

(2)解:根据题意得[㈠1)+(-5)]+0+(4+15+30+12)=(-16)+0+61=45(千米)

45+30x7=45+210=255(千米).

答:小美家的新能源纯电动汽车这7天行驶的总路程为255千米;

(3)解:新能源纯电动汽车这7天的行驶总路程的耗电费用为(255+100)X15X0.8=2.55X15X0.8=30.6(元)

燃油车行驶相同路程的耗油费用为(255+100)x9x7.2=2.55x9x7.2=165.24(元),

165.24-30.6=134.64(元).

答:小美家新能源纯电动汽车这7天的行驶总路程的耗电费用比原来燃油车行驶相同路程的耗油费用节省

了134.64元.

22.阅读材料:代数式运算中:6x-3x=(6-3)x=3x,5.r-3x+x=(5-3+l)x=3x,类似的,我们把a+b

看成一个整体,则5(。+人)—3(。+力)+1/+力)=(5—3+1)(。+力)=3(。+力).“整体思想”是中学数学解题中的

一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.

⑴把5-6)2看成一个整体,计算:4("与2一7(〃-与2+伍一»:

(2)已知/一3尸-1,求-2丁+6y+5的值;

(3)已知a—2b=6,2b—c=-3,c—d=9,求(a—c)+(2Z?-2d)-(2/?-2c)的值.

【答案】⑴-2(a-b)2

(2)7

(3)21

【分析】本题主要考查了整式的加减运算,已知式子的值求代数式的值,学会整体代入思想是解题的关键.

(I)根据题意合并同类项即可.

(2)把式子变形成一2/+6卜+5=-2(/-3力+5,然后整体代入求解即可.

(3)把式子变形(2%-c)+(〃-2b)+2(c-d),然后整体代入式子求解即可.

【详解】⑴解:把(。-力产看成一个整体,

则4(a-b)2-7(a-b)2+(a-b)2=(4-7+l)(a-b)2=-2(a-b)2

(2)解:•••/一3),二一1,

.­.-2x2+6y+5=-2(.?-3y)+5=-2x(-l)+5=2+5=7

(3)解:(a-c)+(2b-2d)-(2b-2c)

=a—c+2b—2d-2b+2c

=(2b-c)+(a-2b)+2(c-d),

va-2b=6,2b-c=-3,c-d=9,

,原式=-3+6+2x9=21

23.某校的体育组准备添批足球和跳绳体育器材,张老师在查阅天猫网店后,发现足球每人定价150元,

跳绳每条定价3()元,现有力和4两家网店均提供包邮服务,并给出各自的优惠方案.

力网店:买一个足球送一条跳绳.

8网店:足球和跳绳都打九折.

已知要购买足球50个,跳绳x条(x大于50)

(1)请用含x的代数式分别表示在汆8网店购买,需付款多少?

(2)假如学校买100条跳绳,请你设计出最省钱的购买方案,写出理由.

【答案】⑴在48网店购买,需付款分别为(6000+30%)元,(6750+27%)元

(2)在力网店购买50个足球配送50条跳绳,再在6网店购买50条跳绳最省钱,理由见解析

【分析】本题考查了列代数式、代数式求值以及有理数的混合运算.正确理解题意是解题关键.

(1)根据48两家网店的优惠方案即可求解;

(2)将x=IOO分别代入(1)中所列代数式,再根据4网店买一个足球送•条跳绳的优惠方案可在力网店

购买5()个足球配送50条跳绳,再在6网店购买5()个跳绳,算出此时的总价,即可求解.

【详解】(1)解:/店购买可列式:50x150+(x-50)x30=60004-30xTL;

在网店B购买可列式:(50X150+30x)x0.9=6750+27x元;

(2)解:当x=100时,

在力网店购买需付款:6000+30x100=9000(元),

在8网店购买需付款:6750+27x100=9450(元),

在A网店购买50个足球配送50条跳绳,再在4网店购买100-50=50条跳绳.

合计需付款:150x50+30x50x0.9=8850元

885()<9000<9450,

•••省钱的购买方案是:在力网店购买50个足球配送50条跳绳,再在8网店购买50个跳绳,付款885()元.

24.数轴是初中数学的一个重要工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的

内在联系,它是“数形结合”的基

图I图2

▲▲a

0M

需用图

(1)【知识呈现】

数轴上的点4点C所表示的数如图1所示:若点8与点力表示的数互为相反数,则点8表示的数是

,点力与点C之间的距离.4C=,点4与点。的中点。表示的数是,且在图1的数轴

上标出点D.

⑵【定义】

一个点M(不是原点)在数轴上运动,第一次跳到%的位置(点与点M表示的数互为相反

数),点M}称为点加的一次跳跃点,紧接着从Mx到M2的位置(点与点位于点P的

两侧,且PM,=PM2^O),则点称为点M关于点P的二次跳跃点.如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论