版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古包头市北方重工业集团有限公司第三中学2026届高二上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.2.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列3.如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A. B.C. D.4.已知函数是定义在上奇函数,,当时,有成立,则不等式的解集是()A. B.C. D.5.设是等比数列,且,,则()A.12 B.24C.30 D.326.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.7.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.8.已知命题若直线与抛物线有且仅有一个公共点,则直线与抛物线相切,命题若,则方程表示椭圆.下列命题是真命题的是A. B.C. D.9.一物体做直线运动,其位移(单位:)与时间(单位:)的关系是,则该物体在时的瞬时速度是A. B.C. D.10.点到直线的距离为A.1 B.2C.3 D.411.已知不等式的解集为,关于x的不等式的解集为B,且,则实数a的取值范围为()A. B.C. D.12.若不等式在上有解,则的最小值是()A.0 B.-2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆C的方程为,点P是圆C上的动点,点O为坐标原点,则的最大值为______14.已知函数,是的导函数,则______15.求值______.16.已知椭圆,为其右焦点,过垂直于轴的直线与椭圆相交所得的弦长为,则椭圆的方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在水平桌面上放一只内壁光滑的玻璃水杯,已知水杯内壁为抛物面型(抛物面指抛物线绕其对称轴旋转所得到的面),抛物面的轴截面是如图所示的抛物线.现有一些长短不一、质地均匀的细直金属棒,其长度均不小于抛物线通径的长度(通径是过抛物线焦点,且与抛物线的对称轴垂直的直线被抛物线截得的弦),若将这些细直金属棒,随意丢入该水杯中,实验发现:当细棒重心最低时,达到静止状态,此时细棒交汇于一点.(1)请结合你学过的数学知识,猜想细棒交汇点的位置;(2)以玻璃水杯内壁轴截面的抛物线顶点为原点,建立如图所示直角坐标系.设玻璃水杯内壁轴截面的抛物线方程为,将细直金属棒视为抛物线的弦,且弦长度为,以细直金属棒的中点为其重心,请从数学角度解释上述实验现象.18.(12分)已知关于的不等式(1)若不等式的解集为,求的值(2)若不等式的解集为,求的取值范围19.(12分)已知圆M经过点F(2,0),且与直线x=-2相切.(1)求圆心M的轨迹C的方程;(2)过点(-1,0)的直线l与曲线C交于A,B两点,若,求直线l的斜率k的取值范围.20.(12分)已知直线恒过抛物线的焦点F(1)求抛物线的方程;(2)若直线与抛物线交于A,B两点,且,求直线的方程21.(12分)已知等差数列中,,,等比数列中,,(1)求数列的通项公式;(2)记,求的最小值22.(10分)已知函数(1)判断的零点个数;(2)若对任意恒成立,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C2、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.3、C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在平面中,作,为垂足,因为,分别为,的中点,因为,,所以,所以,同理,所以四边形是平行四边形,所以,所以即为直线到直线的距离,在三角形中,由余弦定理得因为,所以是锐角,所以,在直角三角形中,,故直线到直线的距离为;故选:C4、A【解析】构造函数,分析该函数的定义域与奇偶性,利用导数分析出函数在上为增函数,从而可知该函数在上为减函数,综合可得出原不等式的解集.【详解】令,则函数的定义域为,且,则函数为偶函数,所以,,当时,,所以,函数在上为增函数,故函数在上为减函数,由等价于或:当时,由可得;当时,由可得.综上所述,不等式的解集为.故选:A.5、D【解析】根据已知条件求得的值,再由可求得结果.【详解】设等比数列的公比为,则,,因此,.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题6、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D7、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.8、B【解析】若直线与抛物线的对称轴平行,满足条件,此时直线与抛物线相交,可判断命题为假;当时,,命题为真,根据复合命题的真假关系,即可得出结论.【详解】若直线与抛物线的对称轴平行,直线与抛物线只有一个交点,直线与抛物不相切,可得命题是假命题,当时,,方程表示椭圆命题是真命题,则是真命题.故选:B.【点睛】本题考查复合命题真假的判断,属于基础题.9、A【解析】先对求导,然后将代入导数式,可得出该物体在时的瞬时速度【详解】对求导,得,,因此,该物体在时的瞬时速度为,故选A【点睛】本题考查瞬时速度的概念,考查导数与瞬时变化率之间的关系,考查计算能力,属于基础题10、B【解析】直接利用点到直线的距离公式得到答案.【详解】,答案为B【点睛】本题考查了点到直线的距离公式,属于简单题.11、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分离参数求解即可.【详解】由得,,解得,因为,所以所以可得在上恒成立,即在上恒成立,故只需,,当时,,故故选:B12、D【解析】将题设条件转化为在上有解,然后求出的最大值即可得解.【详解】不等式在上有解,即为在上有解,设,则在上单调递减,所以,所以,即,故选:D.【点睛】本题主要考查二次不等式能成立问题,可以选择分离参数转化为最值问题,也可以进行分情况讨论.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据点与圆的位置关系求得正确答案.【详解】圆的方程可化为,所以圆心为,半径.由于,所以原点在圆外,所以最大值为.故答案为:14、2【解析】根据基本初等函数的导数公式及导数的加法法则,对求导,再求即可.【详解】由题设,,所以.故答案为:15、【解析】将原式子变形为:,将代入变形后的式子得到结果即可.【详解】将代入变形后的式子得到结果为故答案为:16、##【解析】将代入椭圆的方程,可得出,可得出关于的等式,求出的值,进而可求得的值,由此可得出椭圆的方程.【详解】将代入椭圆的方程可得,可得,由已知可得,整理可得,,解得,所以,,因此,椭圆的方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)抛物线的焦点或抛物面的焦点(2)答案见解析【解析】(1)结合通径的特点可猜想得到结果;(2)将问题转化为当时,只要过点,则中点到的距离最小,根据,结合抛物线定义可得结论.【小问1详解】根据通径的特征,知通径会经过抛物线的焦点达到静止状态,则可猜想细棒交汇点位置为:抛物线焦点或抛物面的焦点.【小问2详解】解释上述现象,即证:当(为抛物线通径)时,只要过点,则中点到的距离最小;如图所示,记点在抛物线准线上的射影分别是,,由抛物线定义知:,当过抛物线焦点时,点到准线距离取得最小值,最小值为的一半,此时点到轴距离最小.【点睛】关键点点睛:本题考查抛物线的实际应用问题,解题关键是能够将问题转化为抛物线焦点弦的中点到轴距离最小问题的证明,通过抛物线的定义可证得结论.18、(1);(2)【解析】(1)根据关于的不等式的解集为,得到和1是方程的两个实数根,再利用韦达定理求解.(2)根据关于的不等式的解集为.又因为,利用判别式法求解.【详解】(1)因为关于的不等式的解集为,所以和1是方程的两个实数根,由韦达定理可得,得(2)因为关于的不等式的解集为因为所以,解得,故的取值范围为【点睛】本题主要考查一元二次不等式的解集和恒成立问题,还考查了运算求解的能力,属于中档题.19、(1);(2).【解析】(1)设圆心,轨迹两点的距离公式列出方程,整理方程即可;(2)设直线l的方程和点A、B的坐标,直线方程联立抛物线方程,消去x得出关于y的一元二次方程,结合根的判别式和韦达定理表示出弦,进而列出不等式,解之即可.【小问1详解】设圆心,由题意知,,整理,得,即圆心M的轨迹C方程为:;【小问2详解】由题意知,过点(-1,0)的直线l与抛物线C相交于点A、B,所以直线l的斜率存在且不为0,设直线,点,则,消去x,得,或,,同理可得,所以,即,由,得,解得,综上,或,所以或,即直线l的斜率的取值范围为.20、(1)(2)或【解析】(1)把直线化为,得到抛物线的焦点为,求得,即可求得抛物线的方程;(2)联立方程组,得到,,结合,列出方程求得的值,即可求得直线的方程【小问1详解】解:将直线化为,可得直线恒过点,即抛物线的焦点为,所以,解得,所以抛物线的方程为【小问2详解】解:由题意显然,联立方程组,整理得,设,,则,,因为,所以,解得,所以或,所以直线的方程为或21、(1)(2)0【解析】(1)利用等差数列通项公式基本量的计算可求得,进而利用等比数列的基本量的计算即可求得数列的通项公式;(2)由(1)可知,则,观察分析即可解【小问1详解】设等差数列的公差为d,所以由,,得所以,从而,,所以,,q=3,所以【小问2详解】由(1)可知,所以,当n=1时,为正值﹐所以;当n=2时,为负值﹐所以;当时,为正值﹐所以又综上:当n=3时,有最小值022、(1)个;(2).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车检测站试题及答案
- 安全生产法律法规知识试题及答案
- 卫生资格考试题附答案
- 色彩评估考试题及答案
- 注册会计师测试题《经济法》习题附答案
- 保护动物考试题库及答案
- 心胸外科护理试题及答案
- 医院信息科计算机考试试题大全资源附答案
- 高频临沂第十七中学面试试题及答案
- 患者跌倒坠床的应急预案试题(附答案)
- (2025年)军队文职考试面试真题及答案
- 新版-八年级上册数学期末复习计算题15天冲刺练习(含答案)
- 2025智慧城市低空应用人工智能安全白皮书
- 云南师大附中2026届高三月考试卷(七)地理
- 2024年风电、光伏项目前期及建设手续办理流程汇编
- 通信管道施工质量控制方案
- 学堂在线 雨课堂 学堂云 研究生学术与职业素养讲座 章节测试答案
- 区域地质调查及填图方法
- (完整版)四年级上册数学竖式计算题100题直接打印版
- 新生儿疫苗接种的注意事项与应对措施
- 脓毒症休克患者的麻醉管理
评论
0/150
提交评论