版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届甘肃省武威市凉州区武威六中高二数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=12.记为等差数列的前n项和,有下列四个等式,甲:;乙:;丙:;丁:.如果只有一个等式不成立,则该等式为()A.甲 B.乙C.丙 D.丁3.已知抛物线的焦点为,直线过点与抛物线相交于两点,且,则直线的斜率为()A. B.C. D.4.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定5.在数列中,,则的值为()A. B.C. D.以上都不对6.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴广交会的四个不同地方服务,不同的分配方案有()种A.· B.·C. D.7.现有60瓶饮料,编号从1到60,若用系统抽样的方法从中抽取6瓶进行检验,则所抽取的编号可能为()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,308.若函数,(其中,)的最小正周期是,且,则()A. B.C. D.9.在正四面体中,点为所在平面上动点,若与所成角为定值,则动点的轨迹是()A.圆 B.椭圆C.双曲线 D.抛物线10.已知过抛物线焦点的直线交抛物线于,两点,则的最小值为()A. B.2C. D.311.有一机器人的运动方程为,(是时间,是位移),则该机器人在时刻时的瞬时速度为()A. B.C. D.12.已知,且,则实数的值为()A. B.3C.4 D.6二、填空题:本题共4小题,每小题5分,共20分。13.某次实验得到如下7组数据,通过判断知道与具有线性相关性,其线性回归方程为,则______.(参考公式:)12345676.06.26.36.46.46.76.814.函数单调增区间为______.15.已知抛物线C:y2=8x的焦点为F,直线l过点F与抛物线C交于A,B两点,以F为圆心的圆交线段AB于C,D两点(从上到下依次为A,C,D,B),若,则该圆的半径r的取值范围是____________.16.已知圆C,直线l:,若圆C上恰有四个点到直线l的距离都等于1.则b的取值范围为___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线过坐标原点,圆的方程为(1)当直线的斜率为时,求与圆相交所得的弦长;(2)设直线与圆交于两点,,且为的中点,求直线的方程18.(12分)设全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”的充分条件,求a的取值范围;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.19.(12分)已知抛物线的顶点为原点,焦点F在x轴的正半轴,F到直线的距离为.点为此抛物线上的一点,.直线l与抛物线交于异于N的两点A,B,且.(1)求抛物线方程和N点坐标;(2)求证:直线AB过定点,并求该定点坐标.20.(12分)已知椭圆的左,右焦点为,椭圆的离心率为,点在椭圆C上(1)求椭圆C的方程;(2)点T为椭圆C上的点,若点T在第一象限,且与x轴垂直,过T作两条斜率互为相反数的直线分别与椭圆C交于点M,N,探究直线的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由21.(12分)如图,四棱锥中,平面,∥,,,为上一点,平面(Ⅰ)求证:∥平面;(Ⅱ)若,求点D到平面EMC的距离22.(10分)已知数列{}满足a1=1,a3+a7=18,且(n≥2)(1)求数列{}的通项公式;(2)若=·,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C2、D【解析】分别假设甲、乙、丙、丁不成立,验证得到答案【详解】设数列的公差为,若甲不成立,则,由①,③可得,此时与②矛盾;A错,若乙不成立,则,由①,③可得,此时;与②矛盾;B错,若丙不成立,则,由①,③可得,此时;与②矛盾;C错,若丁不成立,则,由①,③可得,此时;,D对,故选:D.3、B【解析】设直线倾斜角为,由,及,可求得,当点在轴上方,又,求得,利用对称性即可得出结果.【详解】设直线倾斜角为,由,所以,由,,所以,当点在轴上方,又,所以,所以由对称性知,直线的斜率.故选:B.4、A【解析】利用函数在递减求解.【详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A5、C【解析】由数列的递推公式可先求数列的前几项,从而发现数列的周期性的特点,进而可求.【详解】解:,数列是以3为周期的数列故选:【点睛】本题主要考查了利用数列的递推公式求解数列的项,解题的关键是由递推关系发现数列的周期性的特点,属于基础题.6、B【解析】先按要求分为四组,再四个不同地方,四个组进行全排列.【详解】两个组各2人,两个组各1人,属于部分平均分组,要除以平均分组的组数的全排列,故分组方案有种,再将分得的4组,分配到四个不同地方服务,则不同的分配方案有种.故选:B7、A【解析】求得组距,由此确定正确选项.【详解】,即组距为,A选项符合,其它选项不符合.故选:A8、B【解析】利用余弦型函数的周期公式可求得的值,由结合的取值范围可求得的值.【详解】由已知可得,且,因此,.故选:B.9、B【解析】把条件转化为与圆锥的轴重合,面与圆锥的相交轨迹即为点的轨迹后即可求解.【详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令与圆锥的轴线重合,如图所示,则圆锥母线与所成角为定值,所以面与圆锥的相交轨迹即为点的轨迹.根据题意,不可能垂直于平面即轨迹不可能为圆.面不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算与平面所成角为,即时,轨迹为抛物线,时,轨迹为椭圆,,所以轨迹为椭圆.故选:B.【点睛】本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.10、D【解析】设出直线方程,联立抛物线方程,得到韦达定理,求得,利用抛物线定义,将目标式转化为关于的代数式,消元后,利用基本不等式即可求得结果.【详解】因为抛物线的焦点的坐标为,显然要满足题意,直线的斜率存在,设直线的方程为联立可得,其,设坐标为,显然,则,,根据抛物线定义,MF=故=4+4令,故4+4当且仅当,即时取得最小值.故选:D.【点睛】本题考察抛物线中的最值问题,涉及到韦达定理的使用,基本不等式的使用;其中利用的关系,以及抛物线的定义转化目标式,是解决问题的关键.11、B【解析】对运动方程求导,根据导数意义即速度求得在时的导数值即可.【详解】由题知,,当时,,即速度为7.故选:B12、B【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、9##【解析】求得样本中心点的坐标,代入回归直线,即可求得.详解】根据表格数据可得:故,解得.故答案为:.14、【解析】利用导数法求解.【详解】因为函数,所以,当时,,所以的单调增区间是,故答案为:15、【解析】设出直线的方程为,代入抛物线方程,消去,可得关于的二次方程,运用韦达定理及抛物线的定义,化简计算可求解.【详解】抛物线C:y2=8x的焦点为,设以为圆心的圆的半径为,可知,,设,直线的方程为,则,代入抛物线方程,可得,即有,,,,即,所以.故答案为:16、【解析】根据圆的几何性质,结合点到直线距离公式进行求解即可.【详解】圆C:的半径为3,圆心坐标为:设圆心到直线l:的距离为,要想圆C上恰有四个点到直线l的距离都等于1,只需,即,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)、由题意可知直线的方程为,圆的圆心为,半径为,求出圆心到直线的距离,根据勾股定理即可求出与圆相交所得的弦长;(2)、设,因为为的中点,所以,又因为,均在圆上,将,坐标代入圆方程,即可求出点坐标,即可求出直线的方程【小问1详解】由题意:直线过坐标原点,且直线的斜率为直线的方程为,圆的方程为圆的方程可化为:圆的圆心为,半径为圆的圆心到直线:的距离为,与圆相交所得的弦长为【小问2详解】设,为的中点,又,均在圆上,或直线方程或18、(1)(2)【解析】(1)由“”是“”的充分条件,可得,从而可得关于的不等式组,解不等式组可得答案;(2)“”是“”的必要条件,可得,然后分和两种情况求解即可【小问1详解】由题意得到A=[1,5],由“x∈A”是“x∈B”的充分条件可得A⊆B,则,解得,故实数a的取值范围是.【小问2详解】由“x∈A”是“x∈B”的必要条件可得B⊆A,当时,2-a>1+2a,即a<时,满足题意,当时,即a≥时,则,解得≤a≤1.综上a≤1,故实数a的取值范围是.19、(1),(2)证明见解析,定点【解析】(1)设抛物线的标准方程为,利用点到直线距离公式可求出,再利用焦半径公式可求出N点坐标;(2)设直线的方程为,与抛物线联立,利用韦达定理计算,可得关系,然后代入直线方程可得定点.【小问1详解】设抛物线的标准方程为,,其焦点为则,∴所以抛物线的方程为.,所以,所以.因为,所以,所以.【小问2详解】由题意知,直线的斜率不为0,设直线的方程为(),联立方程得设两个交点,(,).所以所以,即整理得,此时恒成立,此时直线l的方程为,可化为,从而直线过定点.20、(1);(2)直线的斜率为定值,且定值为.【解析】(1)根据椭圆的离心率及所过的点求出椭圆参数a、b,即可得椭圆标准方程.(2)由题设得,法一:设为,联立椭圆方程应用韦达定理求M坐标,根据与斜率关系求N的坐标,应用两点式求斜率;法二:设为,,联立椭圆方程,应用韦达定理及得到关于参数m、k的方程,即可判断是否为定值.【小问1详解】由题意,则,又,所以椭圆C方程为,代入有,解得,所以,故椭圆的标准方程为;【小问2详解】由题设易知:,法一:设直线为,由,消去y,整理得,因为方程有一个根为,所以M的横坐标为,纵坐标,故M为,用代替k,得N为,所以,故直线的斜率为定值法二:由已知直线的斜率存在,可设直线为,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,则直线过点T,不合题意,所以.即,故直线的斜率为定值.【点睛】关键点点睛:第二问,设直线方程并联立椭圆方程,应用韦达定理及得到关于直线斜率的方M、N程,或求出的坐标,应用两点式求斜率.21、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)运用线面平行的判定定理证明;(Ⅱ)借助体积相等建立方程求解即可【详解】(Ⅰ)证明:取的中点,连接,因为,所以,又因为平面,所以,所以平面,因为平面,所以∥,面,平面,所以∥平面;(Ⅱ)因为平面,面,所以平面平面,平面平面,过点作直线,则平面,由已知平面,∥,,可得,又,所以为的中点,在中,,在中,,,在中,,由等面积法知,所以,即点D到平面EMC的距离为.考点:直线与平面的位置关系及运用【易错点晴】本题考查的是空间的直线与平面平行的推证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护士岗位招聘笔试题与参考答案
- 焊工(技师)试题库(附答案)
- (完整版)档案管理职称考试题库及答案
- 2025纪检监察考试题库(附参考答案)
- 银行消防考试题及答案
- 低钾血症考试试题及答案
- 大气遥感考试题及答案
- 呼吸系统疾病患者的心理护理
- 2026黑龙江绥化市农业农村局所属农田建设服务中心招聘7人参考题库必考题
- 中共绍兴市纪委绍兴市监委公开选调下属事业单位工作人员5人备考题库必考题
- 长沙股权激励协议书
- 问卷星使用培训
- 心源性脑卒中的防治课件
- 2025年浙江辅警协警招聘考试真题含答案详解(新)
- 果园合伙经营协议书
- 节能技术咨询合同范本
- 物业管理经理培训课件
- 员工解除竞业协议通知书
- 【语文】太原市小学一年级上册期末试题(含答案)
- 储能电站员工转正述职报告
- DB3301∕T 0165-2018 城市照明设施养护维修服务标准
评论
0/150
提交评论