版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省河间市十四中2026届数学高二上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的前3项和为3,,则()A. B.4C. D.12.已知数列的通项公式为,其前项和为,则满足的的最小值为()A.30 B.31C.32 D.333.球O为三棱锥的外接球,和都是边长为的正三角形,平面PBC平面ABC,则球的表面积为()A. B.C. D.4.如图给出的是一道典型的数学无字证明问题:各矩形块中填写的数字构成一个无穷数列,所有数字之和等于1.按照图示规律,有同学提出了以下结论,其中正确的是()A.由大到小的第八个矩形块中应填写的数字为B.前七个矩形块中所填写的数字之和等于C.矩形块中所填数字构成的是以1为首项,为公比的等比数列D.按照这个规律继续下去,第n-1个矩形块中所填数字是5.在中,角、、所对的边分别是、、.已知,,且满足,则的取值范围为()A. B.C. D.6.如图是正方体的平面展开图,在这个正方体中①与平行;②与是异面直线;③与成60°角;④与是异面直线以上四个结论中,正确结论的序号是A.①②③ B.②④C.③④ D.②③④7.在中,,,且BC边上的高为,则满足条件的的个数为()A.3 B.2C.1 D.08.设函数是定义在上的奇函数,且,当时,有恒成立.则不等式的解集为()A. B.C. D.9.是首项和公差均为3的等差数列,如果,则n等于()A.671 B.672C.673 D.67410.如图,在三棱锥中,,二面角的正弦值是,则三棱锥外接球的表面积是()A. B.C. D.11.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.12.在平面直角坐标系xOy中,点(0,4)关于直线x-y+1=0的对称点为()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在点处的切线方程为___________.14.如图三角形数阵:132456109871112131415……按照自上而下,自左而右的顺序,位于第行的第列,则______.15.已知椭圆,分别是椭圆的上、下顶点,是左顶点,为左焦点,直线与相交于点,则________16.已知抛物线方程为,则其焦点坐标为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆经过点和,且圆心在直线上.(1)求圆的方程;(2)过原点的直线与圆交于M,N两点,若的面积为,求直线的方程.18.(12分)已知圆关于直线对称,且圆心C在轴上.(1)求圆C的方程;(2)直线与圆C交于A、B两点,若为等腰直角三角形,求直线的方程.19.(12分)已知点,直线,圆.(1)若连接点与圆心的直线与直线垂直,求实数的值;(2)若直线与圆相交于两点,且弦的长为,求实数的值20.(12分)如图,直四棱柱中,底面是边长为的正方形,点在棱上.(1)求证:;(2)从条件①、条件②、条件③这三个条件中选择两个作已知,使得平面,并给出证明.条件①:为的中点;条件②:平面;条件③:.(3)在(2)的条件下,求平面与平面夹角的余弦值.21.(12分)2017年国家提出乡村振兴战略目标:2020年取得重要进展,制度框架和政策体系基本形成;2035年取得决定性进展,农业农村现代化基本实现;2050年乡村全面振兴,农业强、农村美、农民富全面实现.某地为实现乡村振兴,对某农产品加工企业调研得到该企业2012年到2020年盈利情况:年份201220132014201520162017201820192020年份代码x123456789盈利y(百万)6.06.16.26.06.46.96.87.17.0(1)根据表中数据判断年盈利y与年份代码x是否具有线性相关性;(2)若年盈利y与年份代码x具有线性相关性,求出线性回归方程并根据所求方程预测该企业2021年年盈利(结果保留两位小数)参考数据及公式:,,,,,统计中用相关系数r来衡量变量y,x之间的线性关系的强弱,当时,变量y,x线性相关22.(10分)在平面直角坐标系中,动点到定点的距离比到轴的距离大,设动点的轨迹为曲线,分别过曲线上的两点,做曲线的两条切线,且交于点,与直线交于两点(1)求曲线的方程;(2)求面积的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设等比数列公比为,由已知结合等比数列的通项公式可求得,,代入即可求得结果.【详解】设等比数列的公比为,由,得即,又,即又,,解得又等比数列的前3项和为3,故,即,解得故选:D2、C【解析】由条件可得得出,再由解出的范围,得出答案.【详解】由,则由,即,即,所以所以满足的的最小值为为32故选:C3、B【解析】取中点为T,以及的外心为,的外心为,依据平面平面可知为正方形,然后计算外接球半径,最后根据球表面积公式计算.【详解】设中点为T,的外心为,的外心为,如图由和均为边长为的正三角形则和的外接圆半径为,又因为平面PBC平面ABC,所以平面,可知且,过分别作平面、平面的垂线相交于点即为三棱锥的外接球的球心,且四边形是边长为的正方形,所以外接球半径,则球的表面积为,故选:B4、B【解析】根据题意可得矩形块中的数字从大到小形成等比数列,根据等比数列的通项公式可求.【详解】设每个矩形块中的数字从大到小形成数列,则可得是首项为,公比为的等比数列,,所以由大到小的第八个矩形块中应填写的数字为,故A错误;前七个矩形块中所填写的数字之和等于,故B正确;矩形块中所填数字构成的是以为首项,为公比的等比数列,故C错误;按照这个规律继续下去,第个矩形块中所填数字是,故D错误.故选:B.5、D【解析】利用正弦定理边角互化思想化简得出,利用余弦定理化简得出,结合,根据函数在上的单调性可求得的取值范围.【详解】且,所以,由正弦定理得,即,,,所以,,则,由余弦定理得,,则,由于双勾函数在上单调递增,则,即,所以,.因此,的取值范围为.故选:D.【点睛】本题考查三角形内角余弦值的取值范围的求解,考查了余弦定理以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.6、C【解析】根据平面展开图可得原正方体,根据各点的分布逐项判断可得正确的选项.【详解】由平面展开图可得原正方体如图所示:由图可得:为异面直线,与不是异面直线,是异面直线,故①②错误,④正确.连接,则为等边三角形,而,故或其补角为与所成的角,因为,故与所成的角为,故③正确.综上,正确命题的序号为:③④.故选:C.【点睛】本题考查正方体的平面展开图,注意展开图中的点与正方体中的顶点的对应关系,本题属于容易题.7、B【解析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B8、B【解析】根据当时,可知在上单调递减,结合可确定在上的解集;根据奇偶性可确定在上的解集;由此可确定结果.【详解】,当时,,在上单调递减,,,在上的解集为,即在上的解集为;又为上的奇函数,,为上的偶函数,在上的解集为,即在上的解集为;当时,,不合题意;综上所述:的解集为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题,关键是能够通过构造函数的方式,确定所构造函数的单调性和奇偶性,进而根据零点确定不等式的解集.9、D【解析】根据题意,求得数列的通项公式,代入数据,即可得答案.【详解】因为数列为等差数列,所以,令,解得.故选:D10、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判断出,且两两垂直,由此将三棱锥补形成正方体,利用正方体的外接球半径,求得外接球的表面积.【详解】设是的中点,连接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以两两垂直.由此将三棱锥补形成正方体如下图所示,正方体的边长为2,则体对角线长为.设正方体外接球的半径为,则,所以外接球的表面积为,故选:.11、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B12、D【解析】设出点(0,4)关于直线的对称点的坐标,根据题意列出方程组,解方程组即可【详解】解:设点(0,4)关于直线x-y+1=0的对称点是(a,b),则,解得:,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对函数求导,由导数的几何意义可得切线的斜率,求得切点,由直线的点斜式方程可得所求切线的方程【详解】函数的导数为∴,.曲线在点处的切线方程为,即.故答案为:.14、【解析】由题意可知到第行结束一共有个数字,由此可知在第行;又由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行个数字从大到小排列,由此可知在到数第列,据此即可求出,进而求出结果.【详解】由图可知,第1行有1个数字,第2行有2个数字,第2行有3个数字,……第行有个数字,由此规律可知,到第行结束一共有个数字;又当时,,所以第行结束一共有个数字;当时,,所以在第行,故;由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行是偶数行,共个数字,从大到小排列,所以在倒数第列,所以,所以.故答案为:.15、##【解析】先求出顶点和焦点坐标,求出直线直线与的斜率,利用到角公式求出的正切值,进而求出正弦值.【详解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案为:16、【解析】先将抛物线的方程转化为标准方程的形式,即可判断抛物线的焦点坐标为,从而解得答案.【详解】解:因为抛物线方程为,即,所以,,所以抛物线的焦点坐标为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线的方程为或或【解析】(1)由弦的中垂线与直线的交点为圆心即可求解;(2)由,可得或,进而有或,显然直线斜率存在,设直线,由点到直线的距离公式求出的值即可得答案.【小问1详解】解:设弦的中点为,则有,因为,所以直线,所以直线的中垂线为,则圆心在直线上,且在直线上,联立方程解得圆心,则圆的半径为,所以圆方程为;【小问2详解】解:设圆心到直线的距离为,因为,所以或,所以或,显然直线斜率存在,所以设直线,则或,解得或或,故直线的方程为或或.18、(1)(2)或【解析】(1)根据题意得到等量关系,求出,,进而求出圆的方程;(2)结合第一问求出的圆心和半径,及题干条件得到圆心到直线的距离为,列出方程,求出的值,进而得到直线方程【小问1详解】由题意得:直线过圆心,即,且,解得:,,所以圆C的方程为;【小问2详解】的圆心为,半径为2,由题意得:,圆心到直线的距离为,即,解得:或,所以直线的方程为:或.19、(1)3(2)实数的值为和【解析】(1)由直线垂直,斜率乘积为可得值;(2)求出加以到直线的距离,由勾股定理求弦长,从而可得参数值【小问1详解】圆,,,,,,【小问2详解】圆半径为,设圆心到直线的距离为,则又由点到直线距离公式得:化简得:,解得:或所以实数的值为和.20、(1)证明见解析;(2)答案见解析;(3).【解析】(1)连结,,由直四棱柱的性质及线面垂直的性质可得,再由正方形的性质及线面垂直的判定、性质即可证结论.(2)选条件①③,设,连结,,由中位线的性质、线面垂直的性质可得、,再由线面垂直的判定证明结论;选条件②③,设,连结,由线面平行的性质及平行推论可得,由线面垂直的性质有,再由线面垂直的判定证明结论;(3)构建空间直角坐标系,求平面、平面的法向量,应用空间向量夹角的坐标表示求平面与平面夹角的余弦值.【小问1详解】连结,,由直四棱柱知:平面,又平面,所以,又为正方形,即,又,∴平面,又平面,∴.【小问2详解】选条件①③,可使平面.证明如下:设,连结,,又,分别是,的中点,∴.又,所以.由(1)知:平面,平面,则.又,即平面.选条件②③,可使平面.证明如下:设,连结.因为平面,平面,平面平面,所以,又,则.由(1)知:平面,平面,则.又,即平面.【小问3详解】由(2)可知,四边形为正方形,所以.因为,,两两垂直,如图,以为原点,建立空间直角坐标系,则,,,,,,所以,.由(1)知:平面的一个法向量为.设平面的法向量为,则,令,则.设平面与平面的夹角为,则,所以平面与平面夹角的余弦值为.21、(1)年盈利y与年份代码x具有线性相关性(2),7.25百万元【解析】(1)根据表中的数据和提供的公式计算即可;(2)先求线性回归方程,再代入计算即可【小问1详解】由表中的数据得,,,,因为,所以年盈利y与年份代码x具有线性相关性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护士岗位招聘笔试题与参考答案
- 焊工(技师)试题库(附答案)
- (完整版)档案管理职称考试题库及答案
- 2025纪检监察考试题库(附参考答案)
- 银行消防考试题及答案
- 低钾血症考试试题及答案
- 大气遥感考试题及答案
- 呼吸系统疾病患者的心理护理
- 2026黑龙江绥化市农业农村局所属农田建设服务中心招聘7人参考题库必考题
- 中共绍兴市纪委绍兴市监委公开选调下属事业单位工作人员5人备考题库必考题
- 长沙股权激励协议书
- 问卷星使用培训
- 心源性脑卒中的防治课件
- 2025年浙江辅警协警招聘考试真题含答案详解(新)
- 果园合伙经营协议书
- 节能技术咨询合同范本
- 物业管理经理培训课件
- 员工解除竞业协议通知书
- 【语文】太原市小学一年级上册期末试题(含答案)
- 储能电站员工转正述职报告
- DB3301∕T 0165-2018 城市照明设施养护维修服务标准
评论
0/150
提交评论