2026届广东省广州市越秀区执信中学高二数学第一学期期末预测试题含解析_第1页
2026届广东省广州市越秀区执信中学高二数学第一学期期末预测试题含解析_第2页
2026届广东省广州市越秀区执信中学高二数学第一学期期末预测试题含解析_第3页
2026届广东省广州市越秀区执信中学高二数学第一学期期末预测试题含解析_第4页
2026届广东省广州市越秀区执信中学高二数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省广州市越秀区执信中学高二数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆心,半径为的圆的方程是()A. B.C. D.2.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.33.、是椭圆的左、右焦点,点在椭圆上,,过作的角平分线的垂线,垂足为,则的长为A.1 B.2C.3 D.44.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定5.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.6.抛物线的准线方程为,则实数的值为()A. B.C. D.7.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是A. B.C. D.8.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.119.2021年11月,郑州二七罢工纪念塔入选全国职工爱国主义教育基地名单.某数学建模小组为测量塔的高度,获得了以下数据:甲同学在二七广场A地测得纪念塔顶D的仰角为45°,乙同学在二七广场B地测得纪念塔顶D的仰角为30°,塔底为C,(A,B,C在同一水平面上,平面ABC),测得,,则纪念塔的高CD为()A.40m B.63mC.m D.m10.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.11011.已知集合,则()A. B.C. D.12.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.16030.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26C.0.56 D.0.74二、填空题:本题共4小题,每小题5分,共20分。13.将全体正整数排成一个三角形数阵:按照以上排列的规律,第行从左向右的第2个数为____________.14.已知点是椭圆上的一点,分别为椭圆的左、右焦点,已知=120°,且,则椭圆的离心率为___________.15.若命题“”是假命题,则a的取值范围是_______.16.已知点为双曲线,右支上一点,,为双曲线的左、右焦点,点为线段上一点,的角平分线与线段交于点,且满足,则________;若为线段的中点且,则双曲线的离心率为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l的方程18.(12分)如图①,在梯形PABC中,,与均为等腰直角三角形,,,D,E分别为PA,PC的中点.将沿DE折起,使点P到点的位置(如图②),G为线段的中点.在图②中解决以下两个问题.(1)求证:平面平面;(2)若二面角为120°时,求CG与平面所成角的正弦值.19.(12分)2021年国庆期间,某电器商场为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每消费满8千元,可减8百元.方案二:消费金额超过8千元(含8千元),可抽取小球三次,其规则是依次从装有2个红色小球、2个黄色小球的一号箱子,装有2个红色小球、2个黄色小球的二号箱子,装有1个红色小球、3个黄色小球的三号箱子各抽一个小球(这些小球除颜色外完全相同),其优惠情况为:若抽出3个红色小球则打6折;若抽出2个红色小球则打7折;若抽出1个红色小球则打8折;若没有抽出红色小球则不打折.(1)若有两名顾客恰好消费8千元,他们都选中第二方案,求至少有一名顾客比选择方案一更优惠的概率;(2)若你朋友在该商场消费了1万元,请用所学知识帮助你朋友分析一下应选择哪种付款方案.20.(12分)已知圆的圆心为,且经过点.(1)求圆的标准方程;(2)已知直线与圆相交于、两点,求.21.(12分)已知椭圆:,的左右焦点,是双曲线的左右顶点,的离心率为,的离心率为,点在上,过点E和,分别作直线交椭圆于,和,点,如图.(1)求,的方程;(2)求证:直线和的斜率之积为定值;(3)求证:为定值.22.(10分)已知圆:和圆外一点,过点作圆的切线,切线长为.(1)求圆的标准方程;(2)若圆:,求证:圆和圆相交,并求出两圆的公共弦长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据圆心坐标及半径,即可得到圆的方程.【详解】因为圆心为,半径为,所以圆的方程为:.故选:D.2、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.3、A【解析】延长交延长线于N,则选:A.【点睛】涉及两焦点问题,往往利用椭圆定义进行转化研究,而角平分线性质可转化到焦半径问题,两者切入点为椭圆定义.4、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.5、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.6、B【解析】由题得,解方程即得解.【详解】解:抛物线的准线方程为,所以.故选:B7、C【解析】直线l:y=-x+a与渐近线l1:bx-ay=0交于B,l与渐近线l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考点:直线与圆锥曲线的综合问题;双曲线的简单性质8、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.9、B【解析】设,先表示出,再利用余弦定理即可求解.【详解】如图所示,,设塔高为,因为平面ABC,所以,所以,又,即,解得.故选:B.10、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:11、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.12、D【解析】利用互斥事件概率计算公式直接求解【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:故选:D【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】通过观察、分析、归纳,找出规律运算求解即可【详解】前行共有正整数个,即个,因此第行第个数是全体正整数中第个,即为故答案为:14、【解析】设,由余弦定理知,所以,故填.15、【解析】依题意可得是真命题,参变分离得到,再利用基本不等式计算可得;【详解】解:因为命题“”是假命题,所以命题“”是真命题,即,所以,因为,当且仅当即时取等号,所以,即故答案:16、①.②.【解析】过作,交于点,作,交于点,由向量共线定理可得;再由角平分线性质定理和双曲线的定义、结合余弦定理和离心率公式,可得所求值【详解】解:过作交于点,作交于点,由,得,由角平分线定理;因为为的中点,所以,由双曲线的定义,,所以,,,在中,由余弦定理,所以.故答案为:;.【点睛】本题考查双曲线的定义、方程和性质,以及角平分线的性质定理和余弦定理的运用,考查方程思想和运算能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详解】设直线,,联立,化简得,则,解得,,由弦长公式知,,解得,故直线或18、(1)证明见解析(2)【解析】(1)通过两个线面平行即可证明面面平行(2)以为坐标原点建立直角坐标系,通过空间向量的方法计算线面角的正弦值【小问1详解】如上图所示,在中,因为D,E分别为PA,PC的中点,所以,因为平面,平面,所以平面,连接,交于点,连接,因为与均为等腰直角三角形,,所以,,所以,且,则四边形是平行四边形,所以是中点,且G为线段的中点,所以中,,因为平面,平面,所以平面,又因为平面,,所以平面平面【小问2详解】因为,平面,,所以平面,所以可以以为坐标原点,建立如上图所示的直角坐标系,此时,,,,因为G为线段的中点,所以,所以,,,设平面的法向量为,则有,即,得其中一个法向量,,所以CG与平面所成角的正弦值为19、(1)(2)选择方案二更划算【解析】(1)要使方案二比方案一优惠,则需要抽出至少一个红球,求出没有抽出红色小球的概率,再根据对立事件的概率公式即可得出答案;(2)若选择方案一,则需付款(元),若选择方案二,设付款金额为元,则可取6000,7000,8000,10000,求出对应概率,从而可求得的期望,在比较的期望与9200的大小即可得出结论.【小问1详解】解:根据题意得要使方案二比方案一优惠,则需要抽出至少一个红球,设没有抽出红色小球为事件,则,所以所求概率;【小问2详解】解:若选择方案一,则需付款(元),若选择方案二,设付款金额为元,则可取6000,7000,8000,10000,,,,,故的分布列为X60007000800010000P所以(元),因为,所以选择方案二更划算.20、(1);(2).【解析】(1)求出圆的半径长,结合圆心坐标可得出圆的标准方程;(2)求出圆心到直线的距离,利用勾股定理可求得.小问1详解】解:圆的半径为,因此,圆的标准方程为.【小问2详解】解:圆心到直线的距离为,因此,.21、(1):;:(2)证明见解析(3)证明见解析【解析】(1)利用待定系数法,根据条件先求曲线的方程,再求曲线的方程;(2)首先设,表示直线和的斜率之积,即可求解定值;(3)首先表示直线与方程联立消,利用韦达定理表示弦长,以及利用直线和的斜率关系,表示弦长,并证明为定值.【小问1详解】由题设知,椭圆离心率为解得∴,∵椭圆的左右焦点,是双曲线的左右顶点,∴设双曲线:∴的离心率为解得.∴::;【小问2详解】证明:∵点在上∴设则,∴.∴直线和的斜率之积为定值1;【小问3详解】证明:设直线和的斜率分别为,,则设,:与方程联立消得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论