版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古赤峰林东第一中学2026届数学高一下期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.2.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.753.已知向量,且,则()A.2 B. C. D.4.在正方体中,异面直线与所成的角为()A.30° B.45° C.60° D.90°5.已知点,,直线的方程为,且与线段相交,则直线的斜率的取值范围为()A. B. C. D.6.体积为的正方体的顶点都在同一球面上,则该球面的表面积为A. B. C. D.7.把函数的图象经过变化而得到的图象,这个变化是()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位8.将函数y=sinx-πA.y=sin1C.y=sin19.在中,,,角的平分线,则长为()A. B. C. D.10.若函数,又,,且的最小值为,则正数的值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,内角,,的对边分别为,,.若,,成等比数列,且,则________.12.如图,在中,,,点D为BC的中点,设,.的值为___________.13.在中,,点在边上,若,的面积为,则___________14.记为等差数列的前项和,若,则___________.15.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.16.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一汽车厂生产,,三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.轿车轿车轿车舒适型100150标准型300450600(1)求的值;(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把这8辆轿车的得分看作一个总体,从中任取一个得分数,
记这8辆轿车的得分的平均数为,定义事件,且函数没有零点,求事件发生的概率.18.如图,在四边形中,,,,.(1)若,求;(2)求四边形面积的最大值.19.已知等比数列满足,,等差数列满足,,求数列的前项和.20.已知点,,曲线任意一点满足.(1)求曲线的方程;(2)设点,问是否存在过定点的直线与曲线相交于不同两点,无论直线如何运动,轴都平分,若存在,求出点坐标,若不存在,请说明理由.21.如图,在正三棱柱中,边的中点为,.⑴求三棱锥的体积;⑵点在线段上,且平面,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.2、C【解析】
根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.3、B【解析】
根据向量平行得到,再利用和差公式计算得到答案.【详解】向量,且,则..故选:.【点睛】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.4、C【解析】
首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接.因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.5、A【解析】
直线过定点,利用直线的斜率公式分别计算出直线,和的斜率,根据斜率的单调性即可求斜率的取值范围.【详解】解:直线整理为即可知道直线过定点,作出直线和点对应的图象如图:,,,,,要使直线与线段相交,则直线的斜率满足或,或即直线的斜率的取值范围是,故选.【点睛】本题考查直线斜率的求法,利用数形结合确定直线斜率的取值范围,属于基础题.6、A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为,所以正方体的外接球的半径为,所以该球的表面积为,故选A.【考点】正方体的性质,球的表面积【名师点睛】与棱长为的正方体相关的球有三个:外接球、内切球和与各条棱都相切的球,其半径分别为、和.7、B【解析】
试题分析:,与比较可知:只需将向右平移个单位即可考点:三角函数化简与平移8、C【解析】
将函数y=sin(x-π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(12x-π3),再向左平移π3个单位得到的解析式为y=sin(12(x+π3)-9、B【解析】
在中利用正弦定理可求,从而可求,再根据内角和为可得,从而得到为等腰三角形,故可求的长.【详解】在中,由正弦定理有即,所以,因为,故,故,所以,故,为等腰三角形,故.故选B.【点睛】在解三角形中,我们有时需要找出不同三角形之间相关联的边或角,由它们沟通分散在不同三角形的几何量.10、D【解析】,由,得,,由,得,则,当时,取得最小值,则,解得,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
A,B,C是三角形内角,那么,代入等式中,进行化简可得角A,C的关系,再由,,成等比数列,根据正弦定理,将边的关系转化为角的关系,两式相减可得关于的方程,解方程即得.【详解】因为,所以,所以.因为,,成等比数列,所以,所以,则,整理得,解得.【点睛】本题考查正弦定理和等比数列运用,有一定的综合性.12、【解析】
在和在中,根据正弦定理,分别表示出.由可得等式,代入已知条件化简即可得解.【详解】在中,由正弦定理可得,则在中,由正弦定理可得,则点D为BC的中点,则所以因为,,由诱导公式可知代入上述两式可得所以故答案为:【点睛】本题考查了正弦定理的简单应用,属于基础题.13、【解析】
由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.14、100【解析】
根据题意可求出首项和公差,进而求得结果.【详解】得【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.15、2【解析】
由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【点睛】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】
利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)400;(2);(3)【解析】
(1)由分层抽样按比例可得;(2)把5个样本编号,用列举法列出任取2辆的所有基本事件,得出至少有1辆舒适型轿车的基本事件,计数后可得概率.(3)求出,确定事件所含的个数后可得概率.【详解】(1)由题意,解得;(2)C类产品中舒适型和标准型产品数量比为,因此5人样品中舒适型抽取了2辆,标准型抽取了3辆,编号为,任取2辆的基本事件有:共10个,其中至少有1辆舒适型轿车的基本事件有共7个,所求概率为.(3)由题意,满足的有共6个,函数没有零点,则,解得,再去掉,还有4个,∴所求概率为.【点睛】本题考查分层抽样,考查古典概型,解题关键是用列举法写出所有的基本事件.18、(1);(2).【解析】
(1)直接利用余弦定理,即可得到本题答案;(2)由四边形ABCD的面积=,得四边形ABCD的面积,求S的最大值即可得到本题答案.【详解】(1)当时,在中,由余弦定理得,设(),则,即,解得,所以;(2)的面积为,在中,由余弦定理得,所以,的面积为,所以,四边形的面积为,因为,所以当时,四边形的面积最大,最大值为.【点睛】本题主要考查利用余弦定理、面积公式及三角函数的性质解决实际问题.19、【解析】
由等比数列易得公比和,进而可得等差数列的首项和公差,代入求和公式计算可得.【详解】解:∵等比数列满足,,
∴公比,
,
,
∴等差数列中,
∴公差,
∴数列的前项和.【点睛】本题考查等差数列的求和公式,涉及等比数列的通项公式,求出数列的首项和公差是解决问题的关键,属基础题.20、(1);(2)【解析】
(1)设,再根据化简求解方程即可.(2)设过定点的直线方程为,根据轴平分可得.再联立直线与圆的方程,化简利用韦达定理求解中参数的关系,进而求得定点即可.【详解】(1)设,因为,故,即,整理可得.(2)当直线与轴垂直,且在圆内时,易得关于轴对称,故必有轴平分.当直线斜率存在时,设过定点的直线方程为.设.联立,.因为无论直线如何运动,轴都平分,故,即,所以,.所以代入韦达定理有,化简得.故,恒过定点.即.【点睛】本题主要考查了轨迹方程的求解方法以及联立直线与圆的方程,利用韦达定理代入题中所给的关系式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碘缺乏健康知识讲座课件
- 短歌行课件曹操
- 2026年机械设计基础模拟考试试题
- 2026年智能交通系统设计与实施案例题集含智能交通控制技术
- 2026年环境保护法规遵守及措施执行情况测试题
- 2026年经济法规与税法知识笔试模拟题
- 2026年会计实务操作与财务分析进阶题集
- 2026年化工设备安全操作考试题及答案解析
- 2026年程序员高效编程技能进阶试题集
- 2026年人力资源培训效果测试题人事管理知识检测题目
- Web3创作者经济演进研究
- 河北省邢台市2025-2026学年七年级上学期期末考试历史试卷(含答案)
- (2025年)新疆公开遴选公务员笔试题及答案解析
- 《老年服务礼仪与沟通技巧》-《老年服务礼仪与沟通技巧》-老年服务礼仪与沟通技巧
- 八年级数学人教版下册第十九章《二次根式》单元测试卷(含答案)
- (2025年)广东省事业单位集中招聘笔试试题及答案解析
- 深学细悟四中全会精神凝聚奋进“十五五”新征程磅礴力量
- 市场监督管理局2025年制售假劣肉制品专项整治工作情况的报告范文
- 《二氧化碳转化原理与技术》课件 第9章 二氧化碳电催化转化
- 经济学基础 第5版 自测试卷B及答案
- 旧城区改造项目开发合作合同协议书范本
评论
0/150
提交评论