版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市第十九中学2026届高一数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.2.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为弧田面积,弧田(如图所示)由圆弧和其所对的弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径为6米的弧田,按照上述经验公式计算所得弧田面积大约是()()A.16平方米 B.18平方米C.20平方米 D.24平方米3.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为()A.4 B.2 C.85 D.124.设集合,,则()A. B. C. D.5.若三点共线,则()A.13 B. C.9 D.6.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A.30° B.45° C.60° D.90°7.一个几何体的三视图如图(图中尺寸单位:m),则该几何体的体积为()A. B. C. D.8.已知m、n、a、b为空间四条不同直线,α、β、为不同的平面,则下列命题正确的是().A.若,,则B.若,,则C.若,,,则D.若,,,则9.如图:样本A和B分别取自两个不同的总体,他们的样本平均数分别为和,样本标准差分别为和,则()A.B.C.D.10.某几何体的三视图如图所示,则该几何体的体积为()A.6 B.4C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在矩形中,,现将矩形沿对角线折起,则所得三棱锥外接球的体积是________.12.经过两圆和的交点的直线方程为______.13.已知数列的前项和为,则其通项公式__________.14.若,,则___________.15.某货船在处看灯塔在北偏东方向,它以每小时18海里的速度向正北方向航行,经过40分钟到达处,看到灯塔在北偏东方向,此时货船到灯塔的距离为______海里.16.已知圆,直线l被圆所截得的弦的中点为.则直线l的方程是________(用一般式直线方程表示).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中)的图象如图所示:(1)求函数的解析式及其对称轴的方程;(2)当时,方程有两个不等的实根,求实数的取值范围,并求此时的值.18.直线经过点,且与圆相交与两点,截得的弦长为,求的方程.19.已知向量且,(1)求向量与的夹角;(2)求的值.20.已知圆心在直线上的圆C经过点,且与直线相切.(1)求过点P且被圆C截得的弦长等于4的直线方程;(2)过点P作两条相异的直线分别与圆C交于A,B,若直线PA,PB的倾斜角互补,试判断直线AB与OP的位置关系(O为坐标原点),并证明.21.在中,角、、所对的边分别为、、,且满足.(1)求角的大小;(2)若,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.2、C【解析】分析:根据已知数据分别计算弦和矢的长度,再按照弧田面积经验公式计算,即可得到答案.详解:由题可知,半径,圆心角,弦长:,弦心距:,所以矢长为.按照弧田面积经验公式得,面积故选C.点睛:本题考查弓形面积以及古典数学的应用问题,考查学生对题意的理解和计算能力.3、A【解析】设l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直线4、D【解析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.5、D【解析】
根据三点共线,有成立,解方程即可.【详解】因为三点共线,所以有成立,因此,故本题选D.【点睛】本题考查了斜率公式的应用,考查了三点共线的性质,考查了数学运算能力.6、C【解析】连接,由三角形中位线定理及平行四边形性质可得,所以是与所成角,由正方体的性质可知是等边三角形,所以,与所成角是,故选C.7、C【解析】
根据三视图判断几何体的形状,计算即可得解.【详解】该几何体是一个半径为1的球体削去四分之一,体积为.故选:C.【点睛】本题考查了三视图的识别和球的体积计算,属于基础题.8、D【解析】
根据空间中直线与平面、平面与平面位置关系及其性质,即可判断各选项.【详解】对于A,,,只有当与平面α、β的交线垂直时,成立,当与平面α、β的交线不垂直时,不成立,所以A错误;对于B,,,则或,所以B错误;对于C,,,,由面面平行性质可知,或a、b为异面直线,所以C错误;对于D,若,,,由线面垂直与线面平行性质可知,成立,所以D正确.故选:D.【点睛】本题考查了空间中直线与平面、平面与平面位置关系的性质与判定,对空间想象能力要求较高,属于基础题.9、B【解析】
从图形中可以看出样本A的数据均不大于10,而样本B的数据均不小于10,A中数据波动程度较大,B中数据较稳定,由此得到结论.【详解】∵样本A的数据均不大于10,而样本B的数据均不小于10,,由图可知A中数据波动程度较大,B中数据较稳定,.故选B.10、A【解析】该立方体是正方体,切掉一个三棱柱,所以体积为,故选A。点睛:本题考查三视图还原,并求体积。此类题关键就是三视图的还原,还原过程中,本题采取切割法处理,有图可知,该立方体应该是正方体进行切割产生的,所以我们在画图的过程在,对正方体进行切割比较即可。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
取的中点,连接,三棱锥外接球的半径再计算体积.【详解】如图,取的中点,连接.由题意可得,则所得三棱锥外接球的半径,其体积为.故答案为【点睛】本题考查了三棱锥的外切球体积,计算是解题的关键.12、【解析】
利用圆系方程,求解即可.【详解】设两圆和的交点分别为,则线段是两个圆的公共弦.令,,两式相减,得,即,故线段所在直线的方程为.【点睛】本题考查圆系方程的应用,考查计算能力.13、【解析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.14、【解析】
将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.15、【解析】
由题意利用方位角的定义画出示意图,再利用三角形,解出的长度.【详解】解:由题意画出图形为:因为,,所以,又由于某船以每小时18海里的速度向正北方向航行,经过40分钟航行到,所以(海里).在中,利用正弦定理得:,所以;故答案为:.【点睛】此题考查了学生对于题意的正确理解,还考查了利用正弦定理求解三角形及学生的计算能力,属于基础题.16、【解析】
将圆的方程化为标椎方程,找出圆心坐标与半径,根据垂径定理得到直线与直线垂直,根据直线的斜率求出直线的斜率,确定出直线的方程即可.【详解】由已知圆的方程可得,所以圆心,半径为3,由垂径定理知:直线直线,因为直线的斜率,所以直线的斜率,则直线的方程为,即.故答案为:.【点睛】本题考查直线与圆的位置关系,考查逻辑思维能力和运算能力,属于常考题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),.【解析】
(1)根据图像得A=2,利用,求ω值,再利用时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由得,方程f(x)=2a﹣3有两个不等实根转为f(x)的图象与直线y=2a﹣3有两个不同的交点,从而可求得a的取值范围,利用图像的性质可得的值.【详解】(1)由图知,,解得ω=2,f(x)=2sin(2x+φ),当时,函数取得最大值,可得,即,,解得,又所以,故,令则,所以的对称轴方程为;(2),所以方程有两个不等实根时,的图象与直线有两个不同的交点,可得,当时,,有,故.【点睛】本题考查由y=Asin(ωx+φ)的部分图象确定函数解析式,考查函数y=Asin(ωx+φ)的图象及性质的综合应用,属于中档题.18、或【解析】
直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用平面向量的数量积的运算法则化简,进而求出向量与的夹角;(Ⅱ)利用,对其化简,代入数值,即可求出结果.【详解】解:(Ⅰ)由得因向量与的夹角为(Ⅱ)【点睛】本题考查平面向量的数量积的应用,以及平面向量的夹角以及平面向量的模的求法,考查计算能力.20、(1)或;(2)平行【解析】
(1)设出圆的圆心为,半径为,可得圆的标准方程,根据题意可得,解出即可得出圆的方程,讨论过点P的直线斜率存在与否,再根据点到直线的距离公式即可求解.(2)由题意知,直线PA,PB的倾斜角互补,分类讨论两直线的斜率存在与否,当斜率均存在时,则直线PA的方程为:,直线PB的方程为:,分别与圆C联立可得,利用斜率的计算公式与作比较即可.【详解】(1)根据题意,不妨设圆C的圆心为,半径为,则圆C,由圆C经过点,且与直线相切,则,解得,故圆C的方程为:,所以点在圆上,过点P且被圆C截得的弦长等于4的直线,当直线的斜率不存在时,直线为:,满足题意;当直线的斜率存在时,设直线的斜率为,直线方程为:,故,解得,故直线方程为:.综上所述:所求直线的方程:或.(2)由题意知,直线PA,PB的倾斜角互补,且直线PA,PB的斜率均存在,设两直线的倾斜角为和,,,因为,由正切的性质,则,不妨设直线的斜率为,则PB的斜率为,即:,则:,由,得,点的横坐标为一定是该方程的解,故可得,同理,,,,直线AB与OP平行.【点睛】本题考查了圆的标准方程,已知弦长求直线方程,考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年银行柜员业务金融服务与柜台业务操作规范题目
- 2026年公务员面试模拟与面试技巧训练题集
- 2026年市场营销消费者行为分析实操试题及答案
- 2026年心理咨询服务师心理咨询技能与实践题库
- 2026年化妆品公司招聘市场推广与策划能力测试题目集
- 2026年游戏设计师职业资格认证题库含游戏开发与用户体验
- 2026年环境科学基础环境保护法规模拟测试题
- 2026年营养师食物营养学与膳食搭配基础知识题库
- 2026年物流管理专业应聘人员综合能力测试题
- 2026年音乐理论与欣赏初级模拟试题
- DB37-T 4704-2024 健康体检机构建设与服务规范
- 《小米智能家居》课件
- 建筑施工安全技术操作规程
- 高校绿色金融人才培养模式与机制探索
- NB/T 11446-2023煤矿连采连充技术要求
- 竣工资料编制计划
- 北京石油化工学院大一高等数学上册期末考试卷及答案
- GB/T 13077-2024铝合金无缝气瓶定期检验与评定
- 基坑工程安全风险辨识
- GB/T 43780-2024制造装备智能化通用技术要求
- DB4201-T 575-2019 武汉市环境卫生作业规范
评论
0/150
提交评论