版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省丽江县第三中学数学高一下期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.汉朝时,张衡得出圆周率的平方除以16等于,如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A.32 B.40 C. D.2.已知直线倾斜角的范围是,则此直线的斜率的取值范围是()A. B.C. D.3.在集合且中任取一个元素,所取元素x恰好满足方程的概率是()A. B. C. D.4.已知函数f(x)=x,x≥0,|x2A.a<0 B.0<a<1 C.a>1 D.a≥15.在等差数列中,如果,则数列前9项的和为()A.297 B.144 C.99 D.666.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D.过一条直线有且只有一个平面与已知平面垂直.7.如果且,那么的大小关系是()A. B.C. D.8.已知等比数列中,若,且成等差数列,则()A.2 B.2或32 C.2或-32 D.-19.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.10.已知角的终边过点,则的值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量满足,则与的夹角的余弦值为__________.12.已知函数,则函数的最小值是___.13.的内角的对边分别为.若,则的面积为__________.14.已知向量,且,则___________.15.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.16.在等比数列{an}中,a1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正四棱锥S-ABCD的底面边长为2,侧棱长为x.(1)求出其表面积S(x)和体积V(x);(2)设,求出函数的定义域,并判断其单调性(无需证明).18.如图,边长为2的正方形中,(1)点是的中点,点是的中点,将分别沿折起,使两点重合于点.求证:(2)当时,求三棱锥的体积.19.如图,正方体的棱长为2,E,F分别为,AC的中点.(1)证明:平面;(2)求三棱锥的体积.20.已知函数,是公差为的等差数列,是公比为的等比数列.且,,,.(1)分别求数列、的通项公式;(2)已知数列满足:,求数列的通项公式.21.数列中,,.前项和满足.(1)求(用表示);(2)求证:数列是等比数列;(3)若,现按如下方法构造项数为的有穷数列,当时,;当时,.记数列的前项和,试问:是否能取整数?若能,请求出的取值集合:若不能,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题2、B【解析】
根据直线的斜率等于倾斜角的正切值求解即可.【详解】因为直线倾斜角的范围是,又直线的斜率,.故或.故.故选:B【点睛】本题主要考查了直线斜率与倾斜角的关系,属于基础题.3、B【解析】
写出集合中的元素,分别判断是否满足即可得解.【详解】集合且的元素,,,,,,.基本事件总数为,满足方程的基本事件数为.故所求概率.故选:B.【点睛】本题考查了古典概型概率的求解,属于基础题.4、B【解析】
令g(x)=0得f(x)=a,再利用函数的图像分析解答得到a的取值范围.【详解】令g(x)=0得f(x)=a,函数f(x)的图像如图所示,当直线y=a在x轴和直线x=1之间时,函数y=f(x)的图像与直线y=a有四个零点,所以0<a<1.故选:B【点睛】本题主要考查函数的图像和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平,属于中档题.5、C【解析】试题分析:,,∴a4=13,a6=9,S9==99考点:等差数列性质及前n项和点评:本题考查了等差数列性质及前n项和,掌握相关公式及性质是解题的关键.6、D【解析】一组对边平行就决定了共面;同一平面的两条垂线互相平行,因而共面;这些直线都在同一个平面内即直线的垂面;把书本的书脊垂直放在桌上就明确了7、B【解析】
取,故选B.8、B【解析】
根据等差数列与等比数列的通项公式及性质,列出方程可得q的值,可得的值.【详解】解:设等比数列的公比为q(),成等差数列,,,,解得:,,,故选B.【点睛】本题主要考查等差数列和等比数列的定义及性质,熟悉其性质是解题的关键.9、A【解析】
利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题10、B【解析】
由三角函数的广义定义可得的值.【详解】因为,故选B.【点睛】本题考查三角函数的概念及定义,考查基本运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由得,结合条件,即可求出,的值,代入求夹角公式,即可求解.【详解】由得与的夹角的余弦值为.【点睛】本题考查数量积的定义,公式的应用,求夹角公式的应用,计算量较大,属基础题.12、5【解析】因为,所以,函数,当且仅当,即时等号成立.点睛:本题考查了基本不等式的应用,属于基础题.在用基本不等式时,注意"一正二定三相等"这三个条件,关键是找定值,在本题中,将拆成,凑成定值,再用基本不等式求出最小值.13、【解析】
本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.14、【解析】
把平方,将代入,化简即可得结果.【详解】因为,所以,,故答案为.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).15、4【解析】
先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.16、64【解析】由题设可得q3=8⇒q=3,则a7三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)x>,是减函数.【解析】
(1)画出图形,分别求出四棱锥的高,及侧面的高的表达式,即可求出表面积与体积的表达式;(2)结合表达式,可求出的范围,即定义域,然后判断其为减函数.【详解】(1)过点作平面的垂线,垂足为,取的中点,连结,因为为正四棱锥,所以,,,,所以四棱锥的表面积为,体积.(2),解得,是减函数.【点睛】本题考查了四棱锥的结构特征,考查了表面积与体积的计算,考查了学生的空间想象能力与计算能力,属于中档题.18、(1)见解析;(2)【解析】试题分析:(1)由题意,,∴,∴.(2)把当作底面,因为角=90°,所以为高;过作H垂直于EF,H为EF中点(等腰三角形三线合一);BE=BF=BC,;,,,.考点:折叠问题,垂直关系,体积计算.点评:中档题,对于折叠问题,要特别注意“变”与“不变”的几何元素,及几何元素之间的关系.本题计算几何体体积时,应用了“等体积法”,简化了解题过程.19、(1)证明见解析;(2)【解析】
(1)可利用线线平行来证明线面平行(2)可采用等体积法进行求解【详解】证明:(1)如图,连结BD;因为四边形ABCD为正方形,所以BD交AC于F且F为BD中点;又因为E为中点,所以;因为平面,平面,所以平面;(2)三棱锥的体积.【点睛】本题考查了线面平行的证明及锥体体积的求解方法,证线面平行一般是通过证线线平行来证明,三棱锥的体积常用等体积法转换底面和高进行求解.20、(1),;(2).【解析】
(1)根据题意分别列出关于、的方程,求出这两个量,然后分别求出数列、的首项,再利用等差数列和等比数列的通项公式可计算出数列、的通项公式;(2)令可得出的值,再令,由得出,两式相减可求出,于此得出数列的通项公式.【详解】(1)由题意得,,,解得,且,,,,,且,整理得,解得,,,由等比数列的通项公式可得;(2)由题意可知,对任意的,.当时,,;当时,由,可得,上述两式相减得,即,.不适合上式,因此,.【点睛】本题考查等差数列、等比数列通项公式的求解,以及利用作差法求数列通项,解题时要结合数列递推式的结构选择合适的方法求解,考查运算求解能力,属于中等题.21、(1)(2)证明见详解.(3)能取整数,此时的取值集合为.【解析】
(1)利用递推关系式,令,通过,求出即可.(2)递推关系式转化为:,化简推出数列是等比数列.(3)由,求出,求出,得到通项公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年法律职业道德与职业素养考核题
- 2026年法律职业资格考试实操题
- 2026年财务精英进阶之路财务报表分析与预测专项题库
- 2026年现代物流管理与供应链技术题集
- 2026年物流管理与运输安全练习题
- 2026年国际贸易实务与市场分析认证题库
- 2026年工业互联网认证题库虚拟电厂在工业中的应用
- 2026年会计专业中级职称考试模拟题财务报表分析篇
- 2026年营销高手的电商平台销售题库
- 2026年研究生英语六级考试备考模拟题
- (正式版)DB2327∕T 074-2023 《大兴安岭升麻栽培技术规范》
- 2026年中考历史复习必背重点考点知识点清单
- GJB939A-2022外购器材的质量管理
- GB/T 4127.14-2025固结磨具尺寸第14部分:角向砂轮机用去毛刺、荒磨和粗磨砂轮
- 《建筑业10项新技术(2025)》全文
- 2023版金属非金属地下矿山重大事故隐患判定标准
- (人教版)地理七年级下册填图训练及重点知识
- 二十四点大全
- TB-T 3263.1-2023 动车组座椅 第1部分:一等座椅和二等座椅
- 延迟焦化操作工(中级)考试(题库版)
- JJG596-2012电子式交流电能表
评论
0/150
提交评论