2026届广东省佛山一中石门中学顺德一中国华纪中数学高一下期末达标检测试题含解析_第1页
2026届广东省佛山一中石门中学顺德一中国华纪中数学高一下期末达标检测试题含解析_第2页
2026届广东省佛山一中石门中学顺德一中国华纪中数学高一下期末达标检测试题含解析_第3页
2026届广东省佛山一中石门中学顺德一中国华纪中数学高一下期末达标检测试题含解析_第4页
2026届广东省佛山一中石门中学顺德一中国华纪中数学高一下期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省佛山一中,石门中学,顺德一中,国华纪中数学高一下期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某赛季中,甲、乙两名篮球队员各场比赛的得分茎叶图如图所示,若甲得分的众数为15,乙得分的中位数为13,则()A.15 B.16 C.17 D.182.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN//AB B.平面VAC⊥平面VBCC.MN与BC所成的角为45° D.OC⊥平面VAC3.我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正边形逼近圆,算得圆周率的近似值记为,那么用圆的内接正边形逼近圆,算得圆周率的近似值加可表示成()A. B. C. D.4.若正实数满足,则的最小值为A. B. C. D.5.在中,内角,,的对边分别为,,,若,且,则的形状为()A.等边三角形 B.等腰直角三角形C.最大角为锐角的等腰三角形 D.最大角为钝角的等腰三角形6.已知,则角的终边所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.等差数列前项和为,满足,则下列结论中正确的是()A.是中的最大值 B.是中的最小值C. D.8.直线与平行,则的值为()A. B.或 C.0 D.-2或09.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度10.已知数列是等差数列,数列满足,的前项和用表示,若满足,则当取得最大值时,的值为()A.16 B.15 C.14 D.13二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则______.12.如图所示,E,F分别是边长为1的正方形的边BC,CD的中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成的三棱锥的体积为___________.13.已知圆C的方程为,一定点为A(1,2),要使过A点作圆的切线有两条,则a的取值范围是____________14.函数的最小正周期为__________.15.函数的反函数的图象经过点,那么实数的值等于____________.16.设为正偶数,,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量(单位:千辆/小时)与汽车的平均速度(单位:千米/小时)之间满足的函数关系(为常数),当汽车的平均速度为千米/小时时,车流量为千辆/小时.(1)在该时间段内,当汽车的平均速度为多少时车流量达到最大值?(2)为保证在该时间段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?18.已知海岛在海岛北偏东,,相距海里,物体甲从海岛以海里/小时的速度沿直线向海岛移动,同时物体乙从海岛沿着海岛北偏西方向以海里/小时的速度移动.(1)问经过多长时间,物体甲在物体乙的正东方向;(2)求甲从海岛到达海岛的过程中,甲、乙两物体的最短距离.19.已知向量(1)求函数的单调递减区间;(2)在中,,若,求的周长.20.在中,角所对的边分别为,,,,为的中点.(1)求的长;(2)求的值.21.设向量,,其中,,且.(1)求实数的值;(2)若,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由图可得出,然后可算出答案【详解】因为甲得分的众数为15,所以由茎叶图可知乙得分数据有7个,乙得分的中位数为13,所以所以故选:A【点睛】本题考查的是茎叶图的知识,较简单2、B【解析】

对每一个选项逐一分析判断得解.【详解】A.∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;∵MN//AC,AC∩AB=A,∴MN//AB不成立,故A不正确.B.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,∵VA垂直⊙O所在的平面,BC⊂⊙O所在的平面,∴VA⊥BC,又AC∩VA=A,∴BC⊥平面VAC,又BC⊂平面VBC,∴平面VAC⊥平面VBC,故B正确;C.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故B不正确;∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;D.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故D不正确.故选B.【点睛】本题主要考查空间位置关系的证明,考查异面直线所成的角的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.3、C【解析】

设圆的半径为,由内接正边形的面积无限接近圆的面积可得:,由内接正边形的面积无限接近圆的面积可得:,问题得解.【详解】设圆的半径为,将内接正边形分成个小三角形,由内接正边形的面积无限接近圆的面积可得:,整理得:,此时,即:同理,由内接正边形的面积无限接近圆的面积可得:,整理得:此时所以故选C【点睛】本题主要考查了圆的面积公式及三角形面积公式的应用,还考查了正弦的二倍角公式,考查计算能力,属于中档题.4、D【解析】

将变成,可得,展开后利用基本不等式求解即可.【详解】,,,,当且仅当,取等号,故选D.【点睛】本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).5、D【解析】

先由余弦定理,结合题中条件,求出,再由,求出,进而可得出三角形的形状.【详解】因为,所以,,所以.又,所以,则的形状为最大角为钝角的等腰三角形.故选D【点睛】本题主要考查三角形的形状的判定,熟记余弦定理即可,属于常考题型.6、D【解析】由可知:则的终边所在的象限为第四象限故选7、D【解析】本题考查等差数列的前n项和公式,等差数列的性质,二次函数的性质.设公差为则由等差数列前n项和公式知:是的二次函数;又知对应二次函数图像的对称轴为于是对应二次函数为无法确定所以根据条件无法确定有没有最值;但是根据二次函数图像的对称性,必有即故选D8、A【解析】

若直线与平行,则,解出a值后,验证两条直线是否重合,可得答案.【详解】若直线与平行,

则,

解得或,

又时,直线与表示同一条直线,

故,

故选A.本题考查的知识点是直线的一般式方程,直线的平行关系,正确理解直线平行的几何意义是解答的关键.9、A【解析】

先将转化为,再判断的符号即可得出结论.【详解】解:因为,所以只需把向右平移个单位.故选:A【点睛】函数左右平移变换时,一是要注意平移方向:按“左加右减",如由的图象变为的图象,是由变为,所以是向左平移个单位;二是要注意前面的系数是不是,如果不是,左右平移时,要先提系数,再来计算.10、A【解析】

设等差数列的公差为,根据得到,推出,判断出当时,;时,;再根据,判断出对取正负的影响,进而可得出结果.【详解】设等差数列的公差为,因为数列是等差数列,,所以,因此,所以,所以,,因此,当时,;时,,因为,所以当时,,当时,,当时,,当时,因为,所以;因为所以,当时,取得最大值.故选:A【点睛】本题主要考查等差数列的应用,熟记等差数列的性质,及其函数特征即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用二倍角公式,即可得到本题答案.【详解】因为,所以,得,由,所以.故答案为:【点睛】本题主要考查利用二倍角公式求值,属基础题.12、【解析】

根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.13、【解析】

使过A点作圆的切线有两条,定点在圆外,代入圆方程计算得到答案.【详解】已知圆C的方程为,要使过A点作圆的切线有两条即点A(1,2)在圆C外:恒成立.综上所述:故答案为:【点睛】本题考查了点和圆的位置关系,通过切线数量判断位置关系是解题的关键.14、【解析】

先将转化为余弦的二倍角公式,再用最小正周期公式求解.【详解】解:最小正周期为.故答案为【点睛】本题考查二倍角的余弦公式,和最小正周期公式.15、【解析】

根据原函数与其反函数的图象关于直线对称,可得函数的图象经过点,由此列等式可得结果.【详解】因为函数的反函数的图象经过点,所以函数的图象经过点,所以,即,解得.故答案为:【点睛】本题考查了原函数与其反函数的图象的对称性,属于基础题.16、【解析】

得出的表达式,然后可计算出的表达式.【详解】,,因此,.故答案为:.【点睛】本题考查数学归纳法的应用,考查项的变化,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当汽车的平均速度时车流量达到最大值。(2)【解析】

(1)首先根据题意求出,再利用基本不等式即可求出答案.(2)根据题意列出不等式,解不等式即可.【详解】(1)有题知:,解得.所以,因为,当且仅当时,取“”.所以当汽车的平均速度时车流量达到最大值.(2)有题知:,整理得:,解得:.所以当时,在该时间段内车流量至少为千辆/小时.【点睛】本题第一问考查利用基本不等式求最值,第二问考查了二次不等式的解法,属于中档题.18、(1)小时;(2)海里.【解析】

试题分析:(1)设经过小时,物体甲在物体乙的正东方向,因为小时,所以.则物体甲与海岛的距离为海里,物体乙与海岛距离为海里.在中由正弦定理可求得的值.(2)在中用余弦定理求,再根据二次函数求的最小值.试题解析:解:(1)设经过小时,物体甲在物体乙的正东方向.如图所示,物体甲与海岛的距离为海里,物体乙与海岛距离为海里,,中,由正弦定理得:,即,则.(2)由(1)题设,,,由余弦定理得:∵,∴当时,海里.考点:1正弦定理;2余弦定理;3二次函数求最值.19、(1);(2)【解析】

(1)根据向量的数量积公式、二倍角公式及辅助角公式将化简为,然后利用三角函数的性质,即可求得的单调减区间;(2)由(1)及可求得,由可得,再结合余弦定理即可求得,进而可得的周长.【详解】解:(1)所以函数的单调递减区间为:(2),,又因在中,,,设的三个内角所对的边分别为,又,且,,则,所以的周长为.【点睛】本题考查平面向量的数量积公式,三角函数的二倍角公式、辅助角公式和三角函数的性质,以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解运算能力,属于中档题.20、(1).(2)【解析】

(1)在中分别利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【详解】解:(1)在中,由余弦定理得,∴,解得∵为的中点,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论