版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广西龙胜中学高一下数学期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,正实数是公差为正数的等差数列,且满足,若实数是方程的一个解,那么下列四个判断:①;②;③;④中一定不成立的是()A.① B.②③ C.①④ D.④2.设变量,满足约束条件,则目标函数的最大值为()A. B. C. D.3.半径为,中心角为的弧长为()A. B. C. D.4.已知等差数列中,,则()A. B.C. D.5.若实数满足,则的最大值是()A. B. C. D.6.一个钟表的分针长为,经过分钟,分针扫过图形的面积是()A. B. C. D.7.若双曲线的渐近线与直线所围成的三角形面积为2,则该双曲线的离心率为()A. B. C. D.8.将正整数排列如下:则图中数2020出现在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列9.执行下图所示的程序框图,若输出的,则输入的x为()A.0 B.1 C.0或1 D.0或e10.下列函数中周期为,且图象关于直线对称的函数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若向量,,且,则实数______.12.展开式中,各项系数之和为,则展开式中的常数项为__________.13.涡阳一中某班对第二次质量检测成绩进行分析,利用随机数表法抽取个样本时,先将个同学按、、、、进行编号,然后从随机数表第行第列的数开始向右读(注:如表为随机数表的第行和第行),则选出的第个个体是______.14.数列满足,则数列的前6项和为_______.15.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.16.已知二面角为60°,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列满足:.(1)求证:为等比数列;(2)求的通项公式.18.设.(1)用表示的最大值;(2)当时,求的值.19.已知数列的前项和,满足.(1)若,求数列的通项公式;(2)在满足(1)的条件下,求数列的前项和的表达式;20.在四棱锥中,底面是平行四边形,平面,点,分别为,的中点,且,,.(1)证明:平面;(2)求直线与平面所成角的余弦值.21.已知函数,.(1)求函数在上的单调递增区间;(2)在中,内角、、所对边的长分别是,若,,,求的面积的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先判断出函数的单调性,分两种情况讨论:①;②.结合零点存在定理进行判断.【详解】在上单调减,值域为,又.(1)若,由知,③成立;(2)若,此时,①②③成立.综上,一定不成立的是④,故选D.【点睛】本题考查零点存在定理的应用,考查自变量大小的比较,解题时要充分考查函数的单调性,对函数值符号不确定的,要进行分类讨论,结合零点存在定理来进行判断,考查分析问题和解决问题的能力,属于中等题.2、C【解析】
作出可行域,利用平移法即可求出.【详解】作出不等式组表示的平面区域,如图所示:当直线平移至经过直线与直线的交点时,取得最大值,.故选:C.【点睛】本题主要考查简单线性规划问题的解法应用,属于基础题.3、D【解析】
根据弧长公式,即可求得结果.【详解】,.故选D.【点睛】本题考查了弧长公式,属于基础题型.4、C【解析】
,.故选C.5、B【解析】
根据,将等式转化为不等式,求的最大值.【详解】,,,解得,,的最大值是.故选B.【点睛】本题考查了基本不等式求最值,属于基础题型.6、B【解析】
分析题意可知分针扫过图形是扇形,要求这个扇形的面积需要得到扇形的圆心角和半径,再代入扇形的面积公式计算即可.【详解】经过35分钟,分针走了7个大格,每个大格则分钟走过的度数为钟表的分针长为10分针扫过图形的面积是故选【点睛】本题主要考查了求扇形面积,结合公式需要求出扇形的圆心角和半径,较为基础7、A【解析】渐近线为,时,,所以,即,,,故选A.8、B【解析】
根据题意,构造数列,利用数列求和推出的位置.【详解】根据已知,第行有个数,设数列为行数的数列,则,即第行有个数,第行有个数,……,第行有个数,所以,第行到第行数的总个数,当时,数的总个数,所以,为时的数,即行的数为:,,,,……,所以,为行第列.故选:B.【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.9、C【解析】
根据程序框图,分两种情况讨论,即可求得对应的的值.【详解】当输出结果为时.当,则,解得当,则,解得综上可知,输入的或故选:C【点睛】本题考查了程序框图的简单应用,指数方程与对数方程的解法,属于基础题.10、B【解析】因为,所以选项A,B,C,D的周期依次为又当时,选项A,B,C,D的值依次为所以只有选项A,B关于直线对称,因此选B.考点:三角函数性质二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据,两个向量平行的条件是建立等式,解之即可.【详解】解:因为,,且所以解得故答案为:【点睛】本题主要考查两个向量坐标形式的平行的充要条件,属于基础题.12、【解析】令,则,即,因为的展开式的通项为,所以展开式中常数项为,即常数项为.点睛:本题考查二项式定理;求二项展开式的各项系数的和往往利用赋值法(常赋值为),还要注意整体赋值,且要注意展开式各项系数和二项式系数的区别.13、.【解析】
根据随机数法列出前个个体的编号,即可得出答案.【详解】由随机数法可知,前个个体的编号依次为、、、、、、,因此,第个个体是,故答案为.【点睛】本题考查随机数法读取样本个体编号,读取时要把握两个原则:(1)看样本编号最大数为几位数,读取时就几个数连着一起取;(2)不在编号范围内的号码要去掉,重复的只能取第一次.14、84【解析】
根据分组求和法以及等差数列与等比数列前n项和公式求解.【详解】因为,所以.【点睛】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.15、【解析】
如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以,,,设异面直线的夹角为,所以.16、【解析】
如图
分别作于A,于C,于B,于D,
连CQ,BD则,,
又
当且仅当,即点A与点P重合时取最小值.
故答案选C.【点睛】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)证明和的比是定值,即得;(2)由(1)的通项公式入手,即得。【详解】(1)由题得,,即有,相邻两项之比为定值3,故为公比的等比数列;(2)因为为等比数列,且,则有,整理得的通项公式为.【点睛】本题考查等比数列的概念,以及求数列的通项公式,是基础题。18、(1)(2)或【解析】
(1)化f(x)为sinx的二次函数,根据二次函数的性质,对a讨论求出函数最大值;(2)由M(a)=2求出对应的a值即可.【详解】(1),∵,∴.①当,即时,;②当,即时,;③当,即时,.∴(2)当时,(舍)或-2(舍);当时,;当时,.综上或.【点睛】本题主要考查了三角函数恒等变换的应用和二次函数的性质问题,考查了分段函数求值问题,是中档题.19、(1);(2).【解析】
(1)已知求,利用即可求出;(2)根据数列通项公式特征,采取分组求和法和错位相减法求出【详解】(1)因为,所以,当时,,所以;当时,,即,,因为,所以,,即,当时,也符合公式.综上,数列的通项公式为.(2)因为,所以()由得,两式作差得,,即,故.【点睛】本题主要考查求数列通项的方法——公式法和构造法的应用,以及数列的求和方法——分组求和法和错位相减法的应用.20、(1)见解析(2)【解析】
(1)取中点,连接,,构造平行四边形,由线线平行得到线面平行;(2)根据线面角的定义作出线面角,在直角三角形中求出数值.【详解】(1)证明:取中点,连接,,∵为中点,∴,且,又为中点,底面为平行四边形,∴,,∴,,即为平行四边形,∴,又平面,且平面,∴平面.(2)∵平面,平面,∴平面平面,过作,则平面,连结,则为直线与平面所成的夹角,由,,,得,由,得,在中,,得,在中,,∴,即直线与平面所成角的余弦值为.【点睛】这个题目考查了空间中的直线和平面的位置关系.求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.21、(1),;(2).【解析】
(1)首先把化成的型式,再根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 群众主体责任考核制度
- 物业站绩效考核制度
- 呼叫中心坐席考核制度
- 量化指标建立考核制度
- 收费站票证考核制度
- 设备点检巡检考核制度
- 人事考核制度请假制度
- 纪委新闻发稿考核制度
- 学生流失率考核制度
- 关键岗位质量考核制度
- 2026届湖南省长郡中学生物高三上期末学业质量监测模拟试题含解析
- 2025eber原位杂交检测技术专家共识解读 (1)课件
- 老年友善医院创建-社区卫生服务中心员工手册
- 古罗马公共建筑与政治象征
- 加油站反恐应急预案(3篇)
- 农小蜂-2025年中国大豆进出口贸易数据分析简报
- 宫腔镜手术围手术期护理
- 2024年中考历史真题解析(安徽试卷)
- 2025美国急性冠脉综合征(ACS)患者管理指南解读课件
- 2024年华北水利水电工程集团有限公司招聘笔试参考题库含答案解析
- 《普通心理学》期末考试试题与答案
评论
0/150
提交评论