09年江苏省高三数学大市联考试卷汇编(共50套)
收藏
资源目录
压缩包内文档预览:
编号:1178871
类型:共享资源
大小:13.44MB
格式:RAR
上传时间:2017-04-29
上传人:me****88
IP属地:江西
3.6
积分
- 关 键 词:
-
09
江苏省
高三
数学
大市
联考
试卷
汇编
50
- 资源描述:
-
09年江苏省高三数学大市联考试卷汇编(共50套),09,江苏省,高三,数学,大市,联考,试卷,汇编,50
- 内容简介:
-
用心 爱心 专心 10) 题南京市 2009届高三第一次调研考试 数学试题 、 填空题(本大题共 14 小题,每小题 5分,共 70 分) 1、计算:310= 。 2、若复数1 2 ,( Rmi 是虚数单位)为纯虚数,则 m = 。 3、某人 5 次上班途中所花的时间(单位:分钟)分别为 x , 9,11,10,8 。已知这组数据的平均数为 10,则其方差为 。 4、已知等比数列 31a ,前三项的和为 21 , 则 654 5、设 两个集合,定义集合 且,| ,若 4,3,2,1P , ,221| ,则 。 6、根据如图所示的伪代码,可知输出的结果 I 为 。 7、已知扇形的周长为 则该扇形面积的最大值为 2 8、过椭圆 12222 0( 作斜率为 l 的直线,与椭圆的另一个交点为M ,与 y 轴的交点为 B 。若 ,则该椭圆的离心率为 。 9、若方程 5| 区间 )(1,( 上有解,则所有满足条件的 k 的值的和为 。 10、如图,海岸线上有相距 5 海里的两座灯塔 A 、 B ,灯塔 B 位于灯塔 A 的正南方向,海上停泊着两艘轮船,甲船位于灯塔 A 的北偏西 75 方向,与 A 相距 23 海里用心 爱心 专心 1 11 ) 题 13 ) 题第 15 题乒乓球41 33羽毛球5蓝球22 处;乙船位于灯塔 B 的北偏西 60 方向,与 B 相距 5 海里的 C 处,则两艘船之间的距离为 海里。 11、如图,在正 三棱柱 111 中, 中点,若截面 是面积为 6的直角三角形,则此三棱柱的体积为 。 12、设 p :函数 |2)( 在区间 ),4( 上单调递增; 12果“ p” 是真命题, “ P或 q” 也是 真命题, 那么实数 a 的取值范围是 。 13、如图,在正方形 ,已知 2 M 为 中点,若 N 为正方形内(含边界)任意一点,则 N最大值是 。 14、已知函数 4)( , 1,21x, 是其图象上不同的两点 斜率 k 总满足 421 k,则实数 a 的值是 。 二、解答题 15、(本题满分 14分) 某学校篮球队,羽毛球队、乒乓球队 各 有 10名队员 ,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求: (1) 该队员只属于一支球队的概率; ( 2)该队员最多属于两支球队的概率 16、(本题满分 14分)如图,在四棱锥 中,底面 为菱形, 60Q 为 中点。 ( 1) 若 ,求证:平面 面 用心 爱心 专心 ( 2) 点 M 在线段 , ,试确定实数 t 的值,使得 |面 17、(本题满分 14分)已 知函数 co ss 2 。 ( 1) 求函数 )( 3,6 上的值域; ( 2) 在 中,若 )c o s ()c o s (s )( ,求 值。 18、(本题满分 16 分)在平面直角坐标系 ,已知抛物线 2 横坐标为 4 的点到该抛物线的焦点的 距离为 5。 ( 1) 求抛物线的标准方程; ( 2) 设点 C 是抛物线上的动点,若以 C 为圆心的圆在 y 轴上截得的弦长为 4 ,求证: 圆 C 过定点。 19、(本题满分 16分)设 0a ,函数 |1( 2 (1) 当 1a 时 ,求曲线 )( 在 1x 处的切线方程 ; (2) 当 ),1 x 时 ,求函数 )(最小值 . 20、(本题满分 16分)在数列 知 01 且 21 32a n n g, ( 1) 若数列 p 的值。 ( 2) 求数列 n 项和 爱心 专心 F 2( 3) 当 2n 时,求证:1121 2 009届高三第一次调研试数学附加题 21、选做题 (在 , 四小题中只能选做 2题,每 小题 10分 ,共计 2分 ) A 4 :几何证明选讲 如图,已知四边形 接于 O, , . 阵与变换 已知矩阵 0110M, 0110N。在平面直角坐标系中,设直线 012 在矩阵 应的变换作用下得到的曲线 F ,求曲线 F 的方程。 标系与参数方程 已知直线 l 和参数方程为224),P 是椭圆 14 22 任意一点,求点 P 到直线 l 的距离的最大值。 D选修 4等式选讲 已知 为正数,求证: 941. 必做题:第 22题、第 23题每题 10分,共 20分。 22已知圆 1F : 16)1( 22 定点 2F ( 1, 0) ,动圆过点 2F ,且与圆 1F 相内切。 ( 1)求点 M 的轨迹 C 的方程; ( 2)若过原点的直线 l 与( 1)中的曲线 C 交于 两点,且 1的面用心 爱心 专心 积为23,求直线 l 的方程。 23. 已知 :1()1()1()1()1( 332210 ),2( ( 1)当 5n 时,求543210 的值。 ( 2)设322 nn 432 。试用数学归纳法证明: 当 2n 时,3 )1)(1( 一、 填空 1、21; 2、 2 ; 3、 2 ; 4、 168 ; 5、 4 ; 6、 5; 7、 4 ; 8、36; 9、 1 ; 10、 13 ; 11、 38 ; 12、 ),4( ; 13、 6 ; 14、29。 二、解答题 15、(本题满分 14 分) 解:( 1)(设“该队员只属于一支球队的”为事件 A,则事件 532012)( 2)设“该队员最多属于两支球队的”为事件 B,则事件 略) 16、(本题满分 14分) 解:( 1)连 四边形 形 , 60用心 爱心 专心 为正三角形中点为 Q 为 中点, 又 面 , 面 P B 平面平面 ( 2)当31得 面| ,连 N ,交 O ,则 O 为 的中点,又 边 中线, N 为正三角形 中心,令菱形 边长为 a ,则 。 面| 面 C 平面平面 31333 即: 1t。 17、解: ( 1) 1)62s 2s 2 x65626 x, 1)62s 1 2s 0 x)(区间 3,6 上的值域为 3,0 ( 2) 21)62s )( 2 c, 62626 c,3s c o s ()c o s (s 用心 爱心 专心 s in)s s o sc o ss 2333c o o ss a n 18、解:( 1)依题意,得: 542 p, 2p 。 抛物线标准方程为: 2 ( 2)设圆心 C 的坐标为 ),4( 020 半径为 r 。 圆心 C 在 y 轴上截得的弦长为 4 2202 )4(4 圆心 C 的方程为: 22020220 )4(4)()4( 从而变为: 0)4(2)21( 22020 对于任意的 0,方程均成立。 故有:40202122 02所以,圆 C 过定点( 2, 0)。 19、解( 1)当 1a 时, |1( 2 令 1x 得 ,1)1(,2)1( 以切点为( 1, 2),切线的斜率为 1, 所以曲线 )( 在 1x 处的切线方程为: 01 ( 2)当 时, 2 , 2)()( 0a , 0)( 成立。 )(在 ), e 上增函数。 故当 时, 2m ( 用心 爱心 专心 当 1 时, 1 2 )2)(2(22)( ( 1 ) ( i)当 ,12 a 即 20 a 时, )(在 ),1( 时为正数,所以 )(区间 ),1 e 上为增函数。故当 1x 时, 1且此时 )()1( ( 21,即 222 时, )(在 )2,1( 时为负数,在间 ),2( 时为正数。所以 )(区间 )2,1a 上为减函数,在 ,2( 为增函数 故当2时, 2in ,且此时 )()2( ( 2;即 22时, )(在 ),1( 时为负数,所以 )(区间 1,e上为减函数,故当 时, 2m ( 。 综上所述,当 22时, )( 时和 1 时的最小值都是 2e 。 所以此时 )(最小值为 2)( ;当 222 时, )( 时的最小值为 2( ,而 )()2( , 所以此时 )(最小值为2( 。 当 20 a 时,在 时最小值为 2e ,在 1 时的最小值为 1)1( , 而 )()1( ,所以此时 )(最小值为 1)1( 所以函数 )( 的最小值为222m 2,220、解:( 1)设数列 d ,则 1(1 , 11, 用心 爱心 专心 依题得: 23)()1( 211 对 成立。 即: 23)()2( 21212122 对 成立。 所以2321121212:21121101 ,故 p 的值为 2。 ( 2) )3)(2(2321 3)(2(12 32 当 n 为奇数,且 3n 时,11,46,2423513 。 相乘得 ,211 以 当 1n 也符合。 当 n 为偶数,且 4n 时,3524 1157246 相乘得 ,312 以 23 1 621 ,所以 2 。因此 n )1(2 ,当 2n 时也符合。 所以数列 为偶数为奇数n,)1(2,21。 当 n 为偶数时, 2)13(222)21(2)1(221026 n )4(8 )2( 用心 爱心 专心 当 n 为奇数时, 1n 为偶数, 12 )41)(1(8 )21)(1(1 )3)(1(8 )3)(1( 所以 为偶数为奇数,(8)2(,2)3)(1(8)3)(1(南京市 2009届高三第一次调研试 数学附加题参考答案 21、选做题 A 14 :几何证明选讲 证明:因为 ,所以 2 因为 ,所以 又 A、 B、 C、 D 四点共圆,所以 , 所以 又 ,所以 所以即 2 所以 22 即: 阵与变换 解 :由题设得 10010 1100110 ),( 直线 012 任意一点 , 用心 爱心 专心 点 ),( 矩阵 应的变换作用下变为 ),( , 则有 即 以因为点 ),( 直线 012 ,从而 01)(2 即: 012 所以曲线 F 的方程为 012 标系与参数方程 解: 直线 l 的参数方程为224t( 为参数)故直线 l 的普通方程为 02 因为 p 为椭圆 14 22 任意点,故可设 )P 其中 R 。 因此点 P 到直线 l 的距离是5|)4s |2221|s 2 d 所以当4 k, 时, d 取得最大值552。 D选修 4等式选讲 证明: 0,0 ,所以 942545)41)( 941必做题:第 22题、第 23题每题 10分,共 20分。 22、解:( 1)设圆 M 的半径为 r 。 因为圆 M 与圆 1F ,所以 2 所以 21 4 ,即: 421 所以点 M 的轨迹 C 是以 21,焦点的椭圆且设椭圆方程为 )0(12222 1,42 所 以3,2 所以曲线 C 的方程 13422 用心 爱心 专心 ( 2)因为直线 l 过椭圆的中心,由椭圆的对称性可知,11 2 S 因为231 以431 不妨设点 ),( 11 x 轴上方,则4321 111 O F。 所以231 y, 31 x ,即:点 A 的坐标为 )23,3(或 )23,3(所以直线 l 的斜率为21,故所求直线方和程为 02 23、( 1)当 5n 时, 原等式变为 55443322105 )1()
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。