高考数学知识点总结2022_第1页
高考数学知识点总结2022_第2页
高考数学知识点总结2022_第3页
高考数学知识点总结2022_第4页
高考数学知识点总结2022_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 高考数学知识点总结2021 数学是高中生学习的最重要科目之一,在高考学问点复习过程中特别重要,下面是我为大家整理的关于高考数学学问点(总结),盼望对您有所关心。欢迎大家阅读参考学习! 高考数学学问点总结:导数 (一)导数第肯定义 设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 x ( x0 + x 也在该邻域内 ) 时,相应地函数取得增量 y = f(x0 + x) - f(x0) ;假如 y 与 x 之比当 x0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0

2、) ,即导数第肯定义 (二)导数其次定义 设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 x ( x - x0 也在该邻域内 ) 时,相应地函数变化 y = f(x) - f(x0) ;假如 y 与 x 之比当 x0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即 导数其次定义 (三)导函数与导数 假如函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值

3、,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y, f(x), dy/dx, df(x)/dx。导函数简称导数。 (四)单调性及其应用 1.利用导数讨论多项式函数单调性的一般步骤 (1)求f?(x) (2)确定f?(x)在(a,b)内符号 (3)若f?(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f?(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数 2.用导数求多项式函数单调区间的一般步骤 (1)求f?(x) (2)f?(x)0的解集与定义域的交集的对应区间为增区间; f?(x)0的解集与定义域的交集的

4、对应区间为减区间 高考数学学问点总结:如何高效的把握高中数学学问点一 一、把学问点进行分类 高中三年所学的学问点并不少,但是假如进行分类的话,总的来说也不过八九个系列。所以要想更高效的把握高中数学学问点,可以通过把学问点进行分类的(方法)来达到。你可以想象,不同的学问点系列分别放进不同的箱子,把每个箱子里的学问点挨个解决掉,就能够有很不错的把握高中数学学问点了。 高考数学学问点总结:如何高效的把握高中数学学问点二 二、要根据任务来划分方案 把高中数学学问点进行了分类,接下来要把各个类别的学问点安排给自己,也就是给大脑安排任务,只有大脑完全把握了才能够在高考中取得好成果。每个类别的学问点不行能一

5、次性解决掉,我们需要有方案性的去攻克它们。 要留意把各个类别的学问点根据难易程度和内容的差异性来制定方案,比如这个类别的学问点也许要花多长时间,另一个类别可能会花的时间会更长或更短,可以把每天的学习时间中的一部分用来制定高中数学学问点的把握上。当然最好是把你的方案写出来,列出大纲,这样就可以目标明确的去执行了。 高考数学学问点总结:如何高效的把握高中数学学问点三 三、时间的支配要留意合理化 要制定方案是很简单的,但是最难的还是在于是不是能够真正有效的去执行这些方案。假如要想让你的方案很完善,需要两个方面的支撑:一个方面是这个目标是可以量化的;另一个方面是目标制定的时间是可以掌握的。 需要明确下

6、目标制定的时间是可以掌握的,就是把高中数学学问点的学习当作大大小小的任务,而这些任务不要一开头就是内容多难度大,而要从小处着手,然后再一级一级的增加。循序渐进才能取得更好的效果。 如何高效的把握高中数学学问点?我提示大家,在学习的过程中要学会自我激励和鼓舞,要懂得从学习中查找成就感,这样才能确保在学习过程中始终抱有热忱。高考是有难度的,学习是枯燥乏味的,但是只要有信念有热忱,就能够达到制高点。 高考数学学问点:等差数列公式 等差数列公式an=a1+(n-1)d a1为首项,an为第n项的通项公式,d为公差 前n项和公式为:Sn=na1+n(n-1)d/2 Sn=(a1+an)n/2 若m+n=

7、p+q则:存在am+an=ap+aq 若m+n=2p则:am+an=2ap 以上n.m.p.q均为正整数 解析:第n项的值an=首项+(项数-1)公差 前n项的和Sn=首项n+项数(项数-1)公差/2 公差d=(an-a1)(n-1) 项数=(末项-首项)公差+1 数列为奇数项时,前n项的和=考间项项数 数列为偶数项,求首尾项相加,用它的和除以2 等差考项公式2an+1=an+an+2其考an是等差数列 通项公式:公差项数+首项-公差 高考数学学问点:函数的单调性 一般地,设函数f(x)的定义域为I: 假如对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1 假如对于属于I内某个区间上

8、的任意两个自变量的值x1、x2,当x1f(x2).那么就是f(x)在这个区间上是减函数。 高考数学学问点:函数的单调区间 单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。假如函数y=f(x)在某个区间是增函数或减函数。那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间。 高考数学学问点:常见函数值域 y=kx+b(k0)的值域为R y=k/x的值域为(-,0)(0,+) y=x的值域为x0 y=ax?+bx+c当a0时,值域为 4ac-b?/4a,+) ; 当a0时,值域为(-,4ac-b?/4a 高考数学学问点总结2021相关(文章): 2021高考数学学问点归纳总结 2021高考数学学问点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论