2023学年黑龙江省大兴安岭地区名校九年级数学第一学期期末学业质量监测试题含解析_第1页
2023学年黑龙江省大兴安岭地区名校九年级数学第一学期期末学业质量监测试题含解析_第2页
2023学年黑龙江省大兴安岭地区名校九年级数学第一学期期末学业质量监测试题含解析_第3页
2023学年黑龙江省大兴安岭地区名校九年级数学第一学期期末学业质量监测试题含解析_第4页
2023学年黑龙江省大兴安岭地区名校九年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,在中,于点,则的值为( )A4BCD72抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x-2-1012y04664观察上表,得出下面结论:抛物线与x轴的一个交点为(3,0);函数y=ax2+bx+C的最大值为6;抛物线的对称轴是x=;在对称轴左侧,y随x增大而增大其中正确有(

2、)A1个B2个C3个D4个3如图,在平面直角坐标系中,菱形ABCD的顶点A(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上,若抛物线y=x25x+c经过点B、C,则菱形ABCD的面积为( )A15B20C25D304将抛物线向右平移2个单位, 则所得抛物线的表达式为()ABCD5如图,中,则的值是( )ABCD6若在实数范围内有意义,则的取值范围是( )ABCD7一个袋中有黑球个,白球若干,小明从袋中随机一次摸出个球,记下其黑球的数目,再把它们放回,搅匀后重复上述过程次,发现共有黑球个由此估计袋中的白球个数是()A40个B38个C36个D34个8若分式的值为,则的值为( )ABCD9已知

3、关于x的一元二次方程的一个根为1,则m的值为( )A1B-8C-7D710如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上的一点,连接AF分别交BD,DE于点M,N,且AFDE,连接PN,则下列结论中:;tanEAF=;正确的是()ABCD二、填空题(每小题3分,共24分)11把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为_.12如图,与中,AD的长为_.13ABC中,C=90,AC=6,BC=8,则sinA的值为_14关于的一元二次方程的二根为,且,则_.15方程的两个根是等腰三角形的底和腰,则这

4、个等腰三角形的周长为 16ABCD的两条对角线AC、BD相交于O,现从下列条件:ACBDAB=BCAC=BD ABD=CBD中随机取一个作为条件,可推出ABCD是菱形的概率是_17已知_18如图,O是等边ABC的外接圆,弦CP交AB于点D,已知ADP=75,则POB等于_.三、解答题(共66分)19(10分)解方程:(1)(2)20(6分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD3m,标杆与旗杆的水平距离BD15m,人的眼睛与地面的高度EF1.6m,人与标杆CD的水平距离DF2m,求旗杆AB的高度21(6分)如图,在ABC中,点D是边AB上的一点,ADCACB(1

5、)证明:ADCACB;(2)若AD2,BD6,求边AC的长22(8分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元(日净收入每天共收取的停车费每天的固定支出)(1)当x5时,写出y与x之间的

6、关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?23(8分)如图,在直角坐标系中,为坐标原点已知反比例函数的图象经过点,过点作轴于点,的面积为(1)求和的值;(2)若点在反比例函数的图象上运动,观察图象,当点的纵坐标是,则对应的的取值范围是 24(8分)解方程:(x2)(x1)3x625(10分)如图,AB是O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB

7、延长线上一点,CFEF(1)求证:FC是O的切线;(2)若CF5,求O半径的长26(10分)如图,是的直径,点在上且,连接,过点作交的延长线于点求证:是的切线;参考答案一、选择题(每小题3分,共30分)1、B【分析】利用和可知,然后分别在和中利用求出BD和CD的长度,最后利用BC=BD+CD即可得出答案.【详解】 在中,在中, 故选B【点睛】本题主要考查解直角三角形,掌握锐角三角函数的意义是解题的关键.2、C【解析】从表中可知,抛物线过(0,6),(1,6),所以可得抛物线的对称轴是x=,故正确.当x=-2时,y=0,根据对称性当抛物线与x轴的另一个交点坐标为x=2+2=3.故;当x=2时,y

8、=4,所以在对称轴的右侧,随着x增大,y在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故错,对.选C.3、B【分析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积【详解】解:抛物线的对称轴为,抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BCx轴,点C的横坐标为-1四边形ABCD为菱形,AB=BC=AD=1,点D的坐标为(-2,0),OA=2在RtABC中,AB=1,OA=2,OB=,S菱形ABCD=ADOB=14=3故选:B【点睛

9、】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键4、D【分析】根据“左加右减,上加下减”的规律直接求得【详解】因为抛物线y=3x21向右平移2个单位,得:y=3(x2)21,故所得抛物线的表达式为y=3(x2)21.故选:D.【点睛】本题考查平移的规律,解题的关键是掌握抛物线平移的规律.5、C【分析】根据勾股定理求出a,然后根据正弦的定义计算即可【详解】解:根据勾股定理可得a=故选C【点睛】此题考查的是勾股定理和求锐角三角函数值,掌握利用勾股定理解直角三角形和正弦的定义是解决此题

10、的关键6、A【解析】根据二次根式有意义的条件:被开方数0和分式有意义的条件:分母0,列出不等式,解不等式即可【详解】解:由题意可知: 解得:故选A【点睛】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有意义的条件:被开方数0和分式有意义的条件:分母0是解决此题的关键7、D【分析】同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,根据题中条件求出黑球的频率再近似估计白球数量【详解】解:设袋中的白球的个数是个,根据题意得: 解得故选:D【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可8、A【分析】分式值为零的条件是分子等于零且分母不等于

11、零,据此求解即可【详解】解:分式的值为1,x-2=1且x+41解得:x=2故选:A【点睛】本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键9、D【解析】直接利用一元二次方程的解的意义将x=1代入求出答案即可【详解】关于x的一元二次方程x2+mx8=0的一个根是1,1+m8=0,解得:m=7.故答案选:D.【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.10、A【解析】利用正方形的性质,得出DANEDC,CDAD,CADF即可判定ADFDCE(ASA),再证明ABMFDM,即可解答;根据题意可知:AFDEAE,再根据三角函数即可得出;作P

12、HAN于H利用平行线的性质求出AH,即可解答;利用相似三角形的判定定理,即可解答【详解】解:正方形ABCD的边长为2,点E是BC的中点,ABBCCDAD2,ABCCADF90,CEBE1,AFDE,DAF+ADNADN+CDE90,DANEDC,在ADF与DCE中, ,ADFDCE(ASA),DFCE1,ABDF,ABMFDM,SABM4SFDM;故正确;根据题意可知:AFDEAE, ADDFAFDN,DN ,EN,AN,tanEAF,故正确,作PHAN于HBEAD,PA,PHEN,AH,PH= PN,故正确,PNDN,DPNPDE,PMN与DPE不相似,故错误故选:A【点睛】此题考查三角函数

13、,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质二、填空题(每小题3分,共24分)11、【分析】根据概率的定义求解即可【详解】一副普通扑克牌中的13张红桃牌,牌上的数字是3的倍数有4张概率为故本题答案为:【点睛】本题考查了随机事件的概率12、【分析】先证明ABCADB,然后根据相似三角形的判定与性质列式求解即可.【详解】,ABCADB,, , AD=.故答案为:.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相

14、似三角形灵活运用相似三角形的性质进行几何计算13、【分析】根据勾股定理及三角函数的定义直接求解即可;【详解】如图,sinA,故答案为:【点睛】本题考查了三角函数的定义及勾股定理,熟练掌握三角函数的定义是解题的关键.14、【分析】先降次,再利用韦达定理计算即可得出答案.【详解】的一元二次方程的二根为又,代入得解得:m=故答案为.【点睛】本题考查的是一元二次方程根与系数的关系,若的一元二次方程的二根为,则,.15、1【详解】解:,得x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边

15、关系定理,周长是3+6+6=1故答案是:116、【分析】根据菱形的判定方法直接就可得出推出菱形的概率【详解】根据“对角线互相垂直的平行四边形是菱形”直接判断符合题意;根据“一组邻边相等的平行四边形是菱形”可直接判断符合题意;根据“对角线相等的平行四边形是矩形”,所以不符合菱形的判定方法;,BC=CD,是菱形,故符合题意;推出菱形的概率为:故答案为【点睛】本题主要考查菱形的判定及概率,熟记菱形的判定方法是解题的关键,然后根据概率的求法直接得出答案17、2【分析】设,分别用k表示x、y、z,然后代入计算,即可得到答案.【详解】解:根据题意,设,;故答案为:2.【点睛】本题考查了比例的性质,解题的关

16、键是掌握比例的性质,正确用k来表示x、y、z.18、90【分析】先根据等边三角形的的性质和三角形的外角性质求出ACP,进而求得可得BCP,最后根据圆周角定理BOP=2BCP=90【详解】解:A=ACB=60,ADP=75,ACP=ADP-A=15,BCP=ACB-ACP=45,BOP=2BCP=90.故答案为90.【点睛】此题主要考查了等边三角形的的性质,三角形外角的性质,以及圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半三、解答题(共66分)19、 (1),;(2),.【分析】(1)用因式分解法求解即可;(2)用公式法求解即可.【详解】解:(

17、1)原方程可化为,移项得,分解因式得,于是得,或,;(2)原方程化简得,.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.20、13.5m【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HBEF1.6m,剩下的问题就是求AH的长度,利用CGEAHE,得出,把相关条件代入即可求得AH11.9,所以ABAH+HBAH+EF13.5m【详解】解:CDFB,ABFB,CDABCGEAHE即:AH11.9ABAH+HBAH+EF11.9+1.613.5(m)【点

18、睛】此题考查的是相似三角形的应用,掌握相似三角形的判定和性质是解决此题的关键.21、(1)见解析; (2)1.【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)利用相似三角形的对应边对应成比例列式求解即可【详解】(1)证明:AA,ADCACB,ADCACB(2)解:ADCACB,AB=AD+DB=2+6=8AC2ADAB2816,AC0,AC1【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形灵活运用相似三角形的性质进行几何计算22、(1)y

19、1440 x800;每辆次小车的停车费最少不低于3元;(2)y120 x2+2040 x800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元【分析】(1)根据题意和公式:日净收入每天共收取的停车费每天的固定支出,即可求出y与x的关系式,然后根据日净收入不低于2512元,列出不等式,即可求出x的最小整数值;(2)根据题意和公式:日净收入每天共收取的停车费每天的固定支出,即可求出y与x的关系式;(3)根据x的取值范围,分类讨论:当x5时,根据一次函数的增减性,即可求出此时y的最大值;当x5时,将二次函数一般式化为顶点式,即可求出此时y的最大值,从而得出结论.【详解】解:(1)由题

20、意得:y1440 x8001440 x8002512,x2.3x取整数,x最小取3,即每辆次小车的停车费最少不低于3元答:每辆小车的停车费最少不低于3元;(2)由题意得:y1440120(x5)x800即y120 x2+2040 x800(3)当x5时,14400,y随x的增大而增大当x=5时,最大日净收入y144058006400(元)当x5时,y120 x2+2040 x800120(x217x)800120(x)2+7870当x时,y有最大值但x只能取整数,x取8或1显然,x取8时,小车停放辆次较多,此时最大日净收入为y120+78707840(元)7840元6400元每辆次小车的停车费应定为8元,此时的日净收入为7840元答:每辆次小车的停车费应定为8元,此时的日净收入为7840元【点睛】此题考查的是一次函数和二次函数的综合应用,掌握实际问题中的等量关系、一次函数的增减性和利用二次函数求最值是解决此题的关键.23、(1),;(2)【分析】(1)利用三角形的面积可求出m的值,得出点A的坐标,再代入反比例函数即可得出K的值;(2)利用(1)中得出的反比例函数的解析式求出当y=0时x的值,再根据反比例函数图象的增减性求解即可【详解】解:(1),.,点的坐标为代入,得;(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论