版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京东城55中2026届数学高二上期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是()A.双曲线 B.抛物线C.椭圆 D.圆2.函数的单调递增区间为()A. B.C. D.3.抛物线的焦点坐标为()A. B.C. D.4.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-15.过点且平行于直线的直线的方程为()A. B.C. D.6.若直线与直线平行,则()A. B.C. D.7.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.40428.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,,,,分别是大星中心点与四颗小星中心点的联结线,,则第三颗小星的一条边AB所在直线的倾斜角约为()A. B.C. D.9.已知函数在处取得极值,则()A. B.C. D.10.若,则的值为()A.或 B.或C.1 D.-111.已知,是椭圆C的两个焦点,P是C上的一点,若以为直径的圆过点P,且,则C的离心率为()A. B.C. D.12.动点P,Q分别在抛物线和圆上,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,若,则______14.若双曲线的渐近线方程为,则该双曲线的离心率为___________;若,则双曲线的右焦点到渐近线的距离为__________.15.过点与直线平行的直线的方程是________.16.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)设x=2是函数f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当时,.18.(12分)如下图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值19.(12分)中国男子篮球职业联赛(ChineseBasketballAssociation),简称中职篮(CBA),由中国国家体育总局篮球运动管理中心举办的男子职业篮球赛事,旨在全面提高中国篮球运动水平,其中诞生了姚明、王治郅、易建联、朱芳雨等球星.该比赛分为常规赛和季后赛.由于新冠疫情关系,某年联赛采用赛会制:所有球队集中在同一个地方比赛,分两个阶段进行,每个阶段采用循环赛,分主场比赛和客场比赛,积分排名前8球队进入季后赛.下表是A队在常规赛60场比赛中的比赛结果记录表.阶段比赛场数主场场数获胜场数主场获胜场数第一阶段30152010第二阶段30152515(1)根据表中数据,完成下面列联表:A队胜A队负合计主场5客场20合计60(2)根据(1)中列联表,判断是否有90%的把握认为比赛的“主客场”与“胜负”之间有关?附:.0.1000.0500.025k2.7063.8415.02420.(12分)如图,五边形为东京奥运会公路自行车比赛赛道平面设计图,根据比赛需要,在赛道设计时需预留出,两条服务通道(不考虑宽度),,,,,为赛道.现已知,,千米,千米(1)求服务通道的长(2)在上述条件下,如何设计才能使折线赛道(即)的长度最大,并求最大值21.(12分)如图,在四棱锥中,底面是矩形,平面于点M连接.(1)求证:平面;(2)求平面与平面所成角的余弦值.22.(10分)已知椭圆上的点到焦点的最大距离为3,离心率为.(1)求椭圆的标准方程;(2)设直线与椭圆交于不同两点,与轴交于点,且满足,若,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设点,利用距离公式化简可得出点的轨迹方程,即可得出动点的轨迹图形.【详解】设点,由题意可得,化简可得,即,曲线为反比例函数图象,故动点的轨迹是双曲线.故选:A.2、B【解析】求出函数的定义域,解不等式可得出函数的单调递增区间.【详解】函数的定义域为,由,可得.因此,函数的单调递增区间为.故选:B.3、C【解析】先把抛物线方程化为标准方程,求出即可求解【详解】由,有,可得,抛物线的焦点坐标为故选:C4、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D5、B【解析】根据平行设直线方程,代入点计算得到答案.【详解】设直线方程为,将点代入直线方程得到,解得.故直线方程为:.故选:B.6、D【解析】根据两直线平行可得出关于实数的等式,由此可解得实数的值.【详解】由于直线与直线平行,则,解得.故选:D.7、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.8、C【解析】由五角星的内角为,可知,又平分第三颗小星的一个角,过作轴平行线,则,即可求出直线的倾斜角.【详解】都为五角星的中心点,平分第三颗小星的一个角,又五角星的内角为,可知,过作轴平行线,则,所以直线的倾斜角为,故选:C【点睛】关键点点睛:本题考查直线倾斜角,解题的关键是通过做辅助线找到直线的倾斜角,通过几何关系求出倾斜角,考查学生的数形结合思想,属于基础题.9、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B10、B【解析】求出函数的导数,由方程求解即可.【详解】,,解得或,故选:B11、B【解析】根据题意,在中,设,则,进而根据椭圆定义得,进而可得离心率.【详解】在中,设,则,又由椭圆定义可知则离心率,故选:B.【点睛】本题考查椭圆离心率的计算,考查运算求解能力,是基础题.本题解题的关键在于根据已知条件,结合椭圆的定义,在焦点三角形中根据边角关系求解.12、B【解析】设,根据两点间距离公式,先求得P到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设,圆化简为,即圆心为(0,4),半径为,所以点P到圆心的距离,令,则,令,,为开口向上,对称轴为的抛物线,所以的最小值为,所以,所以的最小值为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量垂直得到等量关系,求出答案.【详解】由题意得:,解得:故答案为:14、①.②.3【解析】由渐近线方程知,结合双曲线参数关系及离心率的定义求双曲线的离心率,由已知可得右焦点为,应用点线距离公式求距离.【详解】由题设,,则,当时,,则双曲线为,故右焦点为,所以右焦点到渐近线的距离为.故答案为:,3.15、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:16、-.【解析】因为,所以,所以,即,又,即,所以数列是首项和公差都为的等差数列,所以,所以考点:数列的递推关系式及等差数列的通项公式【方法点晴】本题主要考查了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到,,确定数列是首项和公差都为的等差数列是解答的关键,着重考查了学生灵活变形能力和推理与论证能力,平时应注意方法的积累与总结,属于中档试题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),的单调递减区间为,单调递增区间为;(2)证明见解析;【解析】(1)求出函数的定义域与导函数,依题意可得,即可求出参数的值,再根据导函数与函数的单调性的关系求出函数的单调区间;(2)依题意可得,令,即证,,又,所以即证,令,利用导数说明其单调性,即可得解;【详解】解:(1)因为,定义域为,所以,因为是函数的极值点,所以,所以,解得,所以,令,则,所以在上单调递增,又,所以当时,,即,所以在上单调递减,当时,,即,所以上单调递增,综上可得的单调递减区间为,单调递增区间为;(2)证明:依题意即证,即证,令,则,所以即证,因为,所以即证,令,则,所以当时,,当时,所以,所以,所以当时,18、(1);(2)证明见解析.【解析】(1)根据离心率为可得,把代入方程可得,又,解方程组即可求得方程;(2)设直线的方程为,整理方程组,求得,及参数的范围,由斜率公式表示出,结合直线方程和韦达定理整理即可得到定值.试题解析:(1)由题意,可得,代入得,又,解得,,所以椭圆的方程为.(2)证明:设直线的方程为,又,,三点不重合,∴,设,,由得,所以,解得,,①,②设直线,的斜率分别为,,则(),分别将①②式代入(),得,所以,即直线,的斜率之和为定值考点:椭圆的标准方程及直线与椭圆的位置关系.【方法点睛】本题主要考查了椭圆的标准方程及直线与椭圆的位置关系,考查了方程的思想和考试与运算能力,属于中档题.求椭圆方程通常用待定系数法,注意隐含条件;研究圆锥曲线中的定值问题,通常根据交点与方程组解得对应性,设而不解,表示出待求定值的表达式,利用韦达定理代入整理,消去参数即可得到定值.19、(1)填表见解析(2)没有【解析】(1)由A队在常规赛60场比赛中的比赛结果记录表可得答案;(2)根据(1)中的列联表,代入可得答案.【小问1详解】(1)根据表格信息得到列联表:A队胜A队负合计主场25530客场201030合计451560【小问2详解】所以没有90%的把握认为比赛的“主客场”与“胜负”之间有关.20、(1)服务通道的长为千米(2)时,折线赛道的长度最大,最大值为千米【解析】(1)先在中利用正弦定理得到长度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根据基本等式求解最值即可.【小问1详解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(负值舍去)所以服务通道的长为千米【小问2详解】在中,由余弦定理得:,即,所以因为,所以,所以,即(当且仅当时取等号)即当时,折线赛道的长度最大,最大值为千米21、(1)证明见详解(2)【解析】(1)连接,交于点,则为中点,再由等腰三角形三线合一可知为中点,连接,利用中位线可知,根据直线与平面平行的判定定理即可证明;(2)根据题意建立空间直角坐标系,求出两个平面的法向量,利用向量法即可求出两平面所成角的余弦值.【小问1详解】连接,交于点,则为中点,因为,于,则为中点,连接,则,又因为平面,平面,所以平面;【小问2详解】如图所示,以点为坐标原点,建立空间直角坐标系,则,,设平面的一个法向量为,由可得,令,得,即,易知平面的一个法向量为,设平面与平面所成角为,,则平面与平面所成角的余弦值为.22、(1)(2),或【解析】(1)由椭圆的性质可知:,解得a和c的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 镇中心小学财务制度
- 安全管理财务制度
- 义工团队财务制度
- 资产管理子公司财务制度
- 奶制品工厂财务制度
- 分行业企业财务制度
- 农村幸福院无纠纷调处制度
- 关于严格执行招标投标法规制度
- 公司安保巡逻制度
- 机构销售策划活动方案(3篇)
- 江苏省南通市如皋市创新班2025-2026学年高一上学期期末数学试题+答案
- 2026年年长租公寓市场分析
- 生态环境监测数据分析报告
- 2025年下半年四川成都温江兴蓉西城市运营集团有限公司第二次招聘人力资源部副部长等岗位5人考试参考试题及答案解析
- 煤炭装卸施工方案(3篇)
- 安徽省蚌埠市2024-2025学年高二上学期期末考试 物理 含解析
- 八年级历史上册小论文观点及范文
- 重庆康德卷2025-2026学年高一数学第一学期期末达标检测试题含解析
- 浙江省杭州市萧山区2024-2025学年六年级上学期语文期末试卷(含答案)
- 文旅智慧景区项目分析方案
- 设备隐患排查培训
评论
0/150
提交评论