版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省”皖南八校“2026届高二数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列中,,前三项之和,则公比的值为()A1 B.C.1或 D.或2.已知椭圆的左、右焦点分别为,点是椭圆上的一点,点是线段的中点,为坐标原点,若,则()A.3 B.4C.6 D.113.过点,的直线的斜率等于2,则的值为()A.0 B.1C.3 D.44.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.5.已知双曲线,过原点作一条倾斜角为的直线分别交双曲线左、右两支于、两点,以线段为直径的圆过右焦点,则双曲线的离心率为().A. B.C. D.6.已知点,和直线,若在坐标平面内存在一点P,使,且点P到直线l的距离为2,则点P的坐标为()A.或 B.或C.或 D.或7.在平面上有一系列点,对每个正整数,点位于函数的图象上,以点为圆心的与轴都相切,且与彼此外切.若,且,,的前项之和为,则()A. B.C. D.8.原点到直线的距离的最大值为()A. B.C. D.9.在数列中,,,则()A.985 B.1035C.2020 D.207010.如图是一水平放置的青花瓷.它的外形为单叶双曲面,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面,且其外形上下对称.花瓶的最小直径为,瓶口直径为,瓶高为,则该双曲线的虚轴长为()A. B.C. D.4511.设是可导函数,当,则()A.2 B.C. D.12.函数为的导函数,令,则下列关系正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知茎叶图记录了甲、乙两组各名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________.甲组乙组14.已知双曲线的左、右焦点分别为,右顶点为,为双曲线上一点,且,线段的垂直平分线恰好经过点,则双曲线的离心率为_______15.已知双曲线的两条渐近线的夹角为,则_______16.达•芬奇认为:和音乐一样,数学和几何“包含了宇宙的一切”,从年轻时起,他就本能地把这些主题运用在作品中,布达佩斯的伊帕姆维泽蒂博物馆收藏的达•芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达•芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.若图3中每个正方体的边长为1,则点到直线的距离是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,,,,平面,点F在线段上运动.(1)若平面,请确定点F的位置并说明理由;(2)若点F满足,求平面与平面的夹角的余弦值.18.(12分)在如图所示的几何体中,四边形是平行四边形,,,,四边形是矩形,且平面平面,,点是线段上的动点(1)证明:;(2)设平面与平面的夹角为,求的最小值19.(12分)在数列中,,,数列满足(1)求证:数列是等比数列,并求出数列的通项公式;(2)数列前项和为,且满足,求的表达式;(3)令,对于大于的正整数、(其中),若、、三个数经适当排序后能构成等差数列,求符合条件的数组.20.(12分)已知分别是椭圆的左、右焦点,点是椭圆上的一点,且的面积为1.(1)求椭圆的短轴长;(2)过原点的直线与椭圆交于两点,点是椭圆上的一点,若为等边三角形,求的取值范围.21.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,PD⊥底面ABCD,点F为棱PD的中点,二面角的余弦值为.(1)求PD的长;(2)求异面直线BF与PA所成角的余弦值;(3)求直线AF与平面BCF所成角的正弦值.22.(10分)如图,在四棱锥中,底面,,是的中点,,.(1)证明:;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据条件列关于首项与公比的方程组,即可解得公比,注意等比数列求和公式使用条件.【详解】等比数列中,,前三项之和,若,,,符合题意;若,则,解得,即公比的值为1或,故选:C【点睛】本题考查等比数列求和公式以及基本量计算,考查基本分析求解能力,属基础题.2、A【解析】利用椭圆的定义可得,再结合条件即求.【详解】由椭圆的定义可知,因为,所以,因为点分别是线段,的中点,所以是的中位线,所以.故选:A.3、A【解析】利用斜率公式即求.【详解】由题可得,∴.故选:A4、B【解析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.5、A【解析】设双曲线的左焦点为,连接、,求得、,利用双曲线的定义可得出关于、的等式,即可求得双曲线的离心率.【详解】设双曲线的左焦点为,连接、,如下图所示:由题意可知,点为的中点,也为的中点,且,则四边形为矩形,故,由已知可知,由直角三角形的性质可得,故为等边三角形,故,所以,,由双曲线的定义可得,所以,.故选:A.6、C【解析】设点的坐标为,根据,点到直线的距离为,联立方程组即可求解.【详解】解:设点的坐标为,线段的中点的坐标为,,∴的垂直平分线方程为,即,∵点在直线上,∴,又点到直线:的距离为,∴,即,联立可得、或、,∴所求点的坐标为或,故选:C7、C【解析】根据两圆的几何关系及其圆心在函数的图象上,即可得到递推关系式,通过构造等差数列求得的通项公式,得出,最后利用裂项相消,求出数列前项和,即可求出.详解】由与彼此外切,则,,,又∵,∴,故为等差数列且,,则,,则,即,故答案选:.8、C【解析】求出直线过的定点,当时,原点到直线距离最大,则可求出原点到直线距离的最大值;【详解】因为可化为,所以直线过直线与直线交点,联立可得所以直线过定点,当时,原点到直线距离最大,最大距离即为,此时最大值为,故选:C.9、A【解析】根据累加法得,,进而得.【详解】解:因为所以,当时,,,……,,所以,将以上式子相加得,所以,,.当时,,满足;所以,.所以.故选:A10、C【解析】设双曲线方程为,,由已知可得,并求得双曲线上一点的坐标,把点的坐标代入双曲线方程,求解,即可得到双曲线的虚轴长【详解】设点是双曲线与截面的一个交点,设双曲线的方程为:,花瓶的最小直径,则,由瓶口直径为,瓶高为,可得,故,解得,该双曲线的虚轴长为故选:11、C【解析】由导数的定义可得,即可得答案【详解】根据题意,,故.故选:C12、B【解析】求导后,令,可求得,再利用导数可得为减函数,比较的大小后,根据为减函数可得答案.【详解】由题意得,,,解得,所以所以,所以为减函数因为,所以,故选:B【点睛】关键点点睛:比较大小的关键是知道的单调性,利用导数可得的单调性.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据中位数、平均数的定义,结合茎叶图进行计算求解即可.【详解】根据茎叶图可知:甲组名学生在一次英语听力测试中的成绩分别;乙组名学生在一次英语听力测试中的成绩分别,因为甲组数据的中位数为,所以有,又因为乙组数据的平均数为,所以有,所以,故答案为:14、【解析】在中求出,再在中求出,即可得到的齐次式,化简即可求出离心率【详解】设双曲线:,,不妨设为双曲线右支上一点因为线段的垂直平分线恰好经过点,且,所以,在中,,所以,,在中,,所以,,因此,,化简得,,即,而,解得故答案为:15、或【解析】首先判断渐近线的倾斜角,再求的值.【详解】由条件可知双曲线的其中一条渐近线方程是,因为两条渐近线的夹角是,所以直线的倾斜角是或,即或.故答案为:或16、【解析】根据题意,求得△的三条边长,在三角形中求边边上的高线即可.【详解】根据题意,延长交于点,连接,如下所示:在△中,容易知:;同理,,满足,设点到直线的距离为,由等面积法可知:,解得,即点到直线的距离是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)F为BD的中点,证明见解析;(2).【解析】(1)由为的中点,取的中点,连接易证四边形为平行四边形,得到,再利用线面平行的判定定理证明;(2)根据题意可得平面ABC与平面AFC的夹角为二面角,取的中点H为坐标原点,建立空间直角坐标系,分别求得平面的一个法向量,平面的一个法向量,设二面角为,由求解.【小问1详解】为的中点.如图:取的中点,连接∵,分别为,的中点,∴且∵且∴平行且等于∴四边形为平行四边形,则∵平面ABC,平面ABC∴平面ABC【小问2详解】由题意知,平面ABC与平面AFC的夹角为二面角,取的中点H为坐标原点,建立如图所示的空间直角坐标系.因为三角形为等腰三角形,易求,则,,所以,,设平面的一个法向量为,则,即,解得设平面的一个法向量为,则,即,解得设二面角为,则,因为二面角为锐角,所以余弦值为.18、(1)证明见解析;(2).【解析】(1)要证,只需证平面,只需证(由勾股定理可证),,只需证平面,只需证(由平面平面可证),(由可证),即可证明结论.(2)以为原点,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系写出点与点的坐标由于轴,可设,可得出与的坐标设为平面的法向量,求出法向量.是关于的一个式子,求出的取值范围,即可求出的最小值【小问1详解】在中,,,,所以,所以所以是等腰直角三角形,即因为,所以又因为平面平面,平面平面,,所以平面又平面,所以又因为,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因为,,所以,所以又,,平面所以平面又平面,所以【小问2详解】以为原点,所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系则,因为轴,可设,可求得,设为平面的法向量则令,解得,所以又因为是平面的法向量所以,因为,所以所以当时,取到最小值19、(1)证明见解析,;(2);(3).【解析】(1)由已知等式变形可得,利用等比数列的定义可证得结论成立,确定等比数列的首项和公比,可求得数列的通项公式;(2)求得,然后分、两种情况讨论,结合裂项相消法可得出的表达式;(3)求得,分、、三种情况讨论,利用奇数与偶数的性质以及整数的性质可求得、的值,综合可得出结论.【小问1详解】解:由可得,,则,,以此类推可知,对任意的,,则,故数列为等比数列,且该数列的首项为,公比为,故,可得.【小问2详解】解:由(1)知,所以,所以,当n=1时,,当时,.因为满足,所以.【小问3详解】解:,、、这三项经适当排序后能构成等差数列,①若,则,所以,,又,所以,,则;②若,则,则,左边为偶数,右边为奇数,所以,②不成立;③若,同②可知③也不成立综合①②③得,20、(1)2(2)【解析】(1)根据题意表示出的面积,即可求得结果;(2)分类讨论直线斜率情况,然后根据是等边三角形,得到,联立直线和椭圆方程,用点的坐标表示上述关系式,化简即可得答案.【小问1详解】因为,所以,又因为,所以,,所以,则椭圆的短轴长为2.【小问2详解】若为等边三角形,应有,即.当直线的斜率不存在时,直线的方程为,且,此时若为等边三角形,则点应为长轴顶点,且,即.当直线的斜率为0时,直线的方程为,且,此时若为等边二角形,则点应为短轴顶点,此时,不为等边三角形.当直线的斜率存在且不为0时,设其方程为,则直线的方程为.由得,同理.因为,所以,解得.因为,所以,则,即.综上,的取值范围是.21、(1)(2)(3)【解析】(1)以为轴,为轴,轴与垂直,建立如图所示的空间直角坐标系,写出各点坐标,设,,由空间向量法求二面角,从而求得,得长;(2)由空间向量法求异面直线所成的角;(3)由空间向量法求线面角【小问1详解】以为轴,为轴,轴与垂直,由于菱形中,轴是的中垂线,建立如图坐标系,则,,,设,,,,设平面一个法向量为,则,令,则,,即,平面的一个法向量是,因为二面角余弦值为.所以,(负值舍去)所以;【小问2详解】由(1),,,,所以异面直线BF与PA所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邢台施工考试题库及答案
- 美术改革模拟试题及答案
- 开封市公共基础辅警考试笔试题库及答案
- 医院感染监测规范考题附答案
- 公立医院编外招聘试题及答案
- 植物生理判断题附答案
- 主管护师考试试题练附答案
- 民营企业会计试题带答案
- 会计初级考试题目及答案
- 验光员测试题(含答案)
- 广东省佛山市南海区2025-2026学年上学期期末八年级数学试卷(含答案)
- 【地理】期末重点复习课件-2025-2026学年八年级地理上学期(人教版2024)
- 2026年乡村治理体系现代化试题含答案
- 通风设备采购与安装合同范本
- 化工设备清洗安全课件
- 2026元旦主题班会:马年猜猜乐新春祝福版 教学课件
- 光伏收购合同范本
- 2025海洋水下机器人控制系统行业市场需求及发展趋势分析投资评估规划报告
- T∕ZZB 1815-2020 塑料 汽车配件用再生聚碳酸酯(PC)专用料
- 2025~2026学年吉林省吉林市一中高一10月月考语文试卷
- 天津市南开中学2025-2026学年高一上数学期末调研模拟试题含解析
评论
0/150
提交评论