安徽省安庆市白泽湖中学2026届高一数学第一学期期末统考模拟试题含解析_第1页
安徽省安庆市白泽湖中学2026届高一数学第一学期期末统考模拟试题含解析_第2页
安徽省安庆市白泽湖中学2026届高一数学第一学期期末统考模拟试题含解析_第3页
安徽省安庆市白泽湖中学2026届高一数学第一学期期末统考模拟试题含解析_第4页
安徽省安庆市白泽湖中学2026届高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省安庆市白泽湖中学2026届高一数学第一学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,,若,则实数的值为A.8 B.2C. D.-22.如图,正方体的棱长为1,动点在线上,,分别是,的中点,则下列结论中错误的是()A. B.平面C.三棱锥的体积为定值 D.存在点,使得平面平面3.已知等腰直角三角形的直角边的长为4,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A. B.C. D.4.已知扇形的圆心角为,面积为8,则该扇形的周长为()A.12 B.10C. D.5.已知函数的值域为,则实数m的值为()A.2 B.3C.9 D.276.已知函数的单调区间是,那么函数在区间上()A.当时,有最小值无最大值 B.当时,无最小值有最大值C.当时,有最小值无最大值 D.当时,无最小值也无最大值7.已知幂函数过点,则在其定义域内()A.为偶函数 B.为奇函数C.有最大值 D.有最小值8.已知函数f(x)=3x       A. B.C. D.9.设,则的大小关系()A. B.C. D.10.已知,,,则,,大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.对于函数和,设,,若存在、,使得,则称与互为“零点关联函数”.若函数与互为“零点关联函数”,则实数的取值范围为()A. B. C. D.12.已知角的终边经过点,则的值是______.13.已知函数在区间是单调递增函数,则实数的取值范围是______14.函数f(x)=log2(x2-1)的单调递减区间为________15.若存在常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立(或和恒成立),则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数b的取值范围是______16.正三棱柱的侧面展开图是边长为6和12的矩形,则该正三棱柱的体积是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边经过点.(1)求的值;(2)若第一象限角满足,求的值.18.已知集合,集合(1)当时,求;(2)若,求实数的取值范围19.已知函数.(1)求函数的最小正周期;(2)求的单调递增区间.20.已知.(1)求,的值;(2)求的值.21.(1)计算:.(2)化简:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用两条直线平行的充要条件求解【详解】:∵直线l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,∴,解得a=8故选A.【点睛】】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用2、D【解析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明,再证明平面即可.对C,根据三棱锥以为底,且同底高不变,故体积不变判定即可.对D,根据与平面有交点判定即可.【详解】在A中,因为分别是的中点,所以,故A正确;在B中,因为,,故,故.故,又有,所以平面,故B正确;在C中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,故C正确.在D中,与平面有交点,所以不存在点,使得平面平面,故D错误.故选:D.【点睛】方法点睛:本题考查空间点线面位置关系,考查棱锥的体积,考查线面垂直的判定定理的应用,判断线面垂直的方法主要有:

线面垂直的判定定理,直线与平面内的两条相交直线垂直;

面面垂直的性质定理,若两平面互相垂直,则在一个平面内垂直于交线的垂直于另一个平面;

线面垂直的性质定理,两条平行线中有一条与平面垂直,则另一条也与平面垂直;

面面平行的性质定理,直线垂直于两平行平面之一,必然垂直于另一个平面3、D【解析】如图为等腰直角三角形旋转而成的旋转体这是两个底面半径为,母线长4的圆锥,故S=2πrl=2π××4=故答案为D.4、A【解析】利用已知条件求出扇形的半径,即可得解周长【详解】解:设扇形的半径r,扇形OAB的圆心角为4弧度,弧长为:4r,其面积为8,可得4r×r=8,解得r=2扇形的周长:2+2+8=12故选:A5、C【解析】根据对数型复合函数的性质计算可得;【详解】解:因为函数的值域为,所以的最小值为,所以;故选:C6、D【解析】依题意不等式的解集为(1,+∞),即可得到且,即,再根据二次函数的性质计算在区间(-1,2)上的单调性及取值范围,即可得到函数的最值情况【详解】因为函数的单调区间是,即不等式的解集为(1,+∞),所以且,即,所以,当时,在上满足,故此时为增函数,既无最大值也无最小值,由此A,B错误;当时,在上满足,此时为减函数,既无最大值也无最小值,故C错误,D正确,故选:D.7、A【解析】设幂函数为,代入点,得到,判断函数的奇偶性和值域得到答案.【详解】设幂函数为,代入点,即,定义域为,为偶函数且故选:【点睛】本题考查了幂函数的奇偶性和值域,意在考查学生对于函数性质的综合应用.8、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B9、C【解析】判断与大小关系,即可得到答案.【详解】因为,,,所以.故选:C.【点睛】本题主要考查对数函数、指数函数的性质,关键是与中间量进行比较,然后得三个数的大小关系,属于基础题.10、C【解析】由对数的性质,分别确定的大致范围,即可得出结果.【详解】因为,所以,,所以,,,所以.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、C【解析】先求得函数的零点为,进而可得的零点满足,由二次函数的图象与性质即可得解.【详解】由题意,函数单调递增,且,所以函数的零点为,设的零点为,则,则,由于必过点,故要使其零点在区间上,则或,即或,所以,故选:C.【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数零点的范围,再由二次函数的图象与性质即可得解.12、##【解析】根据三角函数定义得到,,进而得到答案.【详解】角的终边经过点,,,.故答案为:.13、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间单调递增函数,则,故答案为:.14、【解析】由复合函数同增异减得单调减区间为的单调减区间,且,解得故函数的单调递减区间为15、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以当时,可得对任意的恒成立,则,即,所以;当时,对恒成立,即恒成立,又当时,,当且仅当即时等号成立,所以,综上所述,实数的取值范围是.故答案为:.16、或【解析】分两种情况来找三棱柱的底面积和高,再代入体积计算公式即可【详解】因为正三棱柱的侧面展开图是边长分别为6和12的矩形,所以有以下两种情况,①6是下底面的周长,12是三棱柱的高,此时,下底面的边长为2,面积为,所以正三棱柱的体积为12②12是下底面的周长,6是三棱柱的高,此时,下底面的边长为4,面积为,所以正三棱柱的体积为24,故答案为或【点睛】本题的易错点在于只求一种情况,应该注意考虑问题的全面性.分类讨论是高中数学的常考思想,在运用分类讨论思想做题时,要做到不重不漏三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)可使用已知条件,表示出,然后利用诱导公式、和差公式和二倍角公式对要求解的式子进行化简,带入即可求解;(2)可根据和的值,结合和的范围,判定出的范围,然后计算出的值,将要求的借助使用和差公式展开即可求解.【小问1详解】角的终边经过点,所以.所以.【小问2详解】由条件可知为第一象限角.又为第一象限角,,所以为第二象限角,由得,由,得.18、(1)(2)【解析】(1)利用对数函数单调性求出,即,利用指数函数单调性解不等式,求出,从而求出并集;(2)根据集合的包含关系得到不等式,求出实数的取值范围.【小问1详解】因为,所以,,由,得,所以,当时,∴【小问2详解】由可得:,解得:所以实数的取值范围是19、(1);(2),.【解析】(1)利用三角恒等变换公式化简f(x),即可求正弦型函数最小正周期;(2)根据正弦函数的单调递增区间即可求复合函数f(x)的单调递增区间.【小问1详解】,∴,即函数的最小正周期为.【小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论