版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省合肥市长丰中学高一数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若平面∥平面,直线∥平面,则直线与平面的关系为()A.∥ B. C.∥或 D.2.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为1.抽到的人中,编号落入区间的人数为()A.10 B. C.12 D.133.已知等比数列的首项,公比,则()A. B. C. D.4.函数的图象是()A. B. C. D.5.在中,“”是“”的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件6.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.7.把函数的图像上所有的点向左平行移动个单位长度,再把所得图像上所有点的横坐标缩短到原来的(纵坐标不变),得到的图像所表示的函数是()A. B.C. D.8.的内角的对边分别为,若的面积为,则()A. B. C. D.9.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D.过一条直线有且只有一个平面与已知平面垂直.10.若函数f(x)=loga(x2–ax+2)在区间(0,1]上单调递减,则实数a的取值范围是()A.[2,3) B.(2,3) C.[2,+∞) D.(2,+∞)二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义域为的偶函数.当时,,关于的方程,有且仅有5个不同实数根,则实数的取值范围是_____.12.已知,且,则________.13.下列五个正方体图形中,是正方体的一条对角线,点M,N,P分别为其所在棱的中点,求能得出⊥面MNP的图形的序号(写出所有符合要求的图形序号)______14.给出下列四个命题:①在中,若,则;②已知点,则函数的图象上存在一点,使得;③函数是周期函数,且周期与有关,与无关;④设方程的解是,方程的解是,则.其中真命题的序号是______.(把你认为是真命题的序号都填上)15.已知公式,,借助这个公式,我们可以求函数的值域,则该函数的值域是______.16.已知数列的首项,其前项和为,且,若单调递增,则的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,圆锥中,是圆的直径,是底面圆上一点,且,点为半径的中点,连.(Ⅰ)求证:平面;(Ⅱ)当是边长为4的正三角形时,求点到平面的距离.18.正四棱锥中,,分别为,的中点.(1)求证:平面;(2)若,求异面直线和所成角的余弦值.19.计算:(1)(2)(3)20.如图1,在直角梯形中,,,点在上,且,将沿折起,使得平面平面(如图2).为中点(1)求证:;(2)求四棱锥的体积;(3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由21.已知是圆的直径,垂直圆所在的平面,是圆上任一点.求证:平面⊥平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用空间几何体,发挥直观想象,易得直线与平面的位置关系.【详解】设平面为长方体的上底面,平面为长方体的下底面,因为直线∥平面,所以直线通过平移后,可能与平面平行,也可能平移到平面内,所以∥或.【点睛】空间中点、线、面位置关系问题,常可以借助长方体进行研究,考查直观想象能力.2、C【解析】
由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为1,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.3、B【解析】
由等比数列的通项公式可得出.【详解】解:由已知得,故选:B.【点睛】本题考查等比数列的通项公式的应用,是基础题.4、D【解析】
求出分段函数的解析式,由此确定函数图象.【详解】由于,根据函数解析式可知,D选项符合.故选:D【点睛】本小题主要考查分段函数图象的判断,属于基础题.5、A【解析】
余弦函数在上单调递减【详解】因为A,B是的内角,所以,在上余弦函数单调递减,在中,“”“”【点睛】充要条件的判断,是高考常考知识点,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法。6、B【解析】
首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.7、C【解析】
根据左右平移和周期变换原则变换即可得到结果.【详解】向左平移个单位得:将横坐标缩短为原来的得:本题正确选项:【点睛】本题考查三角函数的左右平移变换和周期变换的问题,属于基础题.8、C【解析】
由题意可得,化简后利用正弦定理将“边化为角“即可.【详解】解:的面积为,,,故选:C.【点睛】本题主要考查正弦定理的应用和三角形的面积公式,属于基础题.9、D【解析】一组对边平行就决定了共面;同一平面的两条垂线互相平行,因而共面;这些直线都在同一个平面内即直线的垂面;把书本的书脊垂直放在桌上就明确了10、A【解析】
函数为函数与的复合函数,复合函数的单调性是同则增,异则减,讨论,,结合二次函数的单调性,同时还要保证真数恒大于零,由二次函数的图象和性质列不等式即可求得的范围.【详解】∵函数在区间上为单调递减函数,∴时,在上为单调递减函数,且在上恒成立,∴需在上的最小值,且对称轴,∴,当时,在上为单调递增函数,不成立,综上可得的范围是,故选:A.【点睛】本题考查了对数函数的图象和性质,二次函数图象和性质,复合函数的定义域与单调性,不等式恒成立问题的解法,转化化归的思想方法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
令,则原方程为,根据原方程有且仅有5个不同实数根,则有5个不同的解,结合图像特征,求出的值或范围,即为方程解的值或范围,转化为范围,即可求解.【详解】令,则原方程为,当时,,且为偶函数,做出图像,如下图所示:当时,有一个解;当或,有两个解;当时,有四个解;当或时,无解.,有且仅有5个不同实数根,关于的方程有一个解为,,另一个解为,在区间上,所以,实数的取值范围是.故答案为:.【点睛】本题考查复合方程根的个数求参数范围,考查了分段函数的应用,利用换元法结合的函数的奇偶性的对称性,利用数形结合是解题的关键,属于难题.12、【解析】试题分析:由得:解方程组:得:或因为,所以所以不合题意,舍去所以,所以,答案应填:.考点:同角三角函数的基本关系和两角差的三角函数公式.13、①④⑤【解析】为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l位置固定,截面MNP变动,l与面MNP是否垂直,可从正、反两方面进行判断.在MN、NP、MP三条线中,若有一条不垂直l,则可断定l与面MNP不垂直;若有两条与l都垂直,则可断定l⊥面MNP;若有l的垂面∥面MNP,也可得l⊥面MNP.解法1作正方体ABCD-A1B1C1D1如附图,与题设图形对比讨论.在附图中,三个截面BA1D、EFGHKR和CB1D1都是对角线l(即AC1)的垂面.对比图①,由MN∥BAl,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.对比图②,由MN与面CB1D1相交,而过交点且与l垂直的直线都应在面CBlDl内,所以MN不垂直于l,从而l不垂直于面MNP.对比图③,由MP与面BAlD相交,知l不垂直于MN,故l不垂直于面MNP.对比图④,由MN∥BD,MP∥BA.知面MNP∥面BA1D,故l⊥面MNP.对比图⑤,面MNP与面EFGHKR重合,故l⊥面MNP.综合得本题的答案为①④⑤.解法2如果记正方体对角线l所在的对角截面为.各图可讨论如下:在图①中,MN,NP在平面上的射影为同一直线,且与l垂直,故l⊥面MNP.事实上,还可这样考虑:l在上底面的射影是MP的垂线,故l⊥MP;l在左侧面的射影是MN的垂线,故l⊥MN,从而l⊥面MNP.在图②中,由MP⊥面,可证明MN在平面上的射影不是l的垂线,故l不垂直于MN.从而l不垂直于面MNP.在图③中,点M在上的射影是l的中点,点P在上的射影是上底面的内点,知MP在上的射影不是l的垂线,得l不垂直于面MNP.在图④中,平面垂直平分线段MN,故l⊥MN.又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥面MNP.在图⑤中,点N在平面上的射影是对角线l的中点,点M、P在平面上的射影分别是上、下底面对角线的4分点,三个射影同在一条直线上,且l与这一直线垂直.从而l⊥面MNP.至此,得①④⑤为本题答案.14、①③【解析】
①利用三角形的内角和定理以及正弦函数的单调性进行判断;②根据余弦函数的有界性可进行判断;③利用周期函数的定义,结合余弦函数的周期性进行判断;④根据互为反函数图象的对称性进行判断.【详解】①在中,若,则,则,由于正弦函数在区间上为增函数,所以,故命题①正确;②已知点,则函数,所以该函数图象上不存在一点,使得,故命题②错误;③函数的是周期函数,当时,,该函数的周期为.当时,,该函数的周期为.所以,函数的周期与有关,与无关,命题③正确;④设方程的解是,方程的解是,由,可得,由,可得,则可视为函数与直线交点的横坐标,可视为函数与直线交点的横坐标,如下图所示:联立,得,可得点,由于函数的图象与函数的图象关于直线对称,则直线与函数和函数图象的两个交点关于点对称,所以,命题④错误.故答案为:①③.【点睛】本题考查三角函数的周期、正弦函数单调性的应用、互为反函数图象的对称性的应用以及余弦函数有界性的应用,考查分析问题和解决问题的能力,属于中等题.15、【解析】
根据题意,可令,结合,再进行整体代换即可求解【详解】令,则,,,则,,,则函数值域为故答案为:【点睛】本题考查3倍角公式的使用,函数的转化思想,属于中档题16、【解析】由可得:两式相减得:两式相减可得:数列,,...是以为公差的等差数列,数列,,...是以为公差的等差数列将代入及可得:将代入可得要使得,恒成立只需要即可解得则的取值范围是点睛:本题考查了数列的递推关系求通项,在含有的条件中,利用来求通项,本题利用减法运算求出数列隔一项为等差数列,结合和数列为增数列求出结果,本题需要利用条件递推,有一点难度.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)由平面,证得,再由为等边三角形,得到,利用线面垂直的判定定理,即可证得平面;(Ⅱ)利用等体积法,即可求得点到平面的距离.【详解】(Ⅰ)证明:在圆锥中,则平面,又因为平面,所以,因为,,所以,又,所以为等边三角形,因为为中点,所以,又,所以平面;(Ⅱ)依题意,,因为为直径,所以,又,所以,中,边上的高为,的面积为,又,,则面积为,所以,解得.【点睛】本题主要考查了线面垂直的判定与证明,以及利用等体积法求解点面距,其中解答中熟练线面位置关系的判定定理,以及合理运用等体积法的运用是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)见解析(2)【解析】
(1)取的中点,连接、,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(2)连接交于,则为的中点,结合为的中点,得,可得(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,可得,设,求解三角形可得异面直线和所成角的余弦值.【详解】(1)取的中点,连接、,是的中点,且,在正四棱锥中,底面为正方形,且,又为的中点,且,且,则四边形为平行四边形,,平面,平面,平面;(2)连接交于,则为的中点,又为的中点,,又,(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,,设,则,,,则,因此,异面直线和所成角的余弦值为.【点睛】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 短道速滑知识
- 短期培训招生转化方案
- 盾构施工同步注浆培训
- 2026年数学建模与数据分析进阶试题集
- 2026年旅游目的地文化与风土人情理解题目集
- 2026年企业员工职业规划与个人发展习题集
- 2026年经济分析研究生入学考试题目与解析
- 2026年语言教学如英语教学法理论试题
- 2026年心理咨询师情绪管理专项练习题
- 2026年英语口语能力提升模拟测试题
- 神经内科卒中患者误吸风险的多维度评估
- 机加工检验员培训课件
- 上海市奉贤区2026届初三一模物理试题(含答案)
- 2025年数字货币跨境结算法律场景报告
- 医院消毒供应监测基本数据集解读与实践
- 2025年中国联通AI+研发效能度量实践报告
- 2026年新高考历史全真模拟试卷 3套(含答案解析)
- 恶性肿瘤高钙血症
- 民房火灾扑救要点与处置流程
- 安全生产自查自纠报告及整改措施
- 中小企业数字化转型城市试点实施指南
评论
0/150
提交评论