版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1为了落实中央提出的精准扶贫政策,永济市人力资源和社会保障局派人到开张镇石桥村包扶户贫困户,要求每户都有且只有人包扶,每人至少包扶户,则不同的包扶方案种数为( )ABCD2
2、设命题,则为( )ABCD3若随机变量服从正态分布,则( )附:,A13413B12718C11587D112284某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为A100B200C300D4005设,则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件6已知,为的导函数,则的图象是()ABCD7已知命题:“,有成立”,则命题为( )A,有成立B,有成立C,有成立D,有成立8函数的图像大致为 ()ABCD9的展开式中不含项的各项系数之和为( )ABCD10已知函数f(x)=xex
3、2+axeA1B-1CaD-a11己知点A是抛物线的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足,当取最大值时,点P恰好在以A、B为焦点的双曲线上,则双曲线的离心率为ABCD12设是虚数单位,条件复数是纯虚数,条件,则是的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知满足约束条件则的最大值为_.14已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8.高为4的等腰三角形,侧视图是一个底边长为6.高为4的等腰三角形,则该几何体的体积为_;侧面积为_15湖面上浮着一个球,湖水结冰后将球取出,冰
4、上留下一个直径为24cm,深为8cm的空穴,则这球的半径为_cm.16执行如图所示的程序框图,则输出的i的值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)以直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,且在两种坐标系中取相同的长度单位.曲线的极坐标方程是.()求曲线的直角坐标方程;()设曲线与轴正半轴及轴正半轴交于点,在第一象限内曲线上任取一点,求四边形面积的最大值.18(12分)已知点P(3,1)在矩阵变换下得到点P(5,1)试求矩阵A和它的逆矩阵19(12分)某大型高端制造公司为响应中国制造2025中提出的坚持“创新驱动、质量为先、绿色发展、结构
5、优化、人才为本”的基本方针,准备加大产品研发投资,下表是该公司2017年512月份研发费用(百万元)和产品销量(万台)的具体数据:月份56789101112研发费用x(百万元)2361021131518产品销量与(万台)1122.563.53.54.5(1)根据数据可知y与x之间存在线性相关关系()求出y关于x的线性回归方程(系数精确到0.001);()若2018年6月份研发投人为25百万元,根据所求的线性回归方程估计当月产品的销量;(2)为庆祝该公司9月份成立30周年,特制定以下奖励制度:以z(单位:万台)表示日销量,则每位员工每日奖励200元;,则每位员工每日奖励300元;,则每位员工每日
6、奖励400元现已知该公司9月份日销量z(万台)服从正态分布,请你计算每位员工当月(按30天计算)获得奖励金额总数大约多少元.参考数据: ,.参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: ,.若随机变量X服从正态分布,则,.20(12分)如图,是通过某城市开发区中心O的两条南北和东西走向的街道,连结M,N两地之间的铁路线是圆心在上的一段圆弧,若点M在点O正北方向3公里;点N到的距离分别为4公里和5公里.(1)建立适当的坐标系,求铁路线所在圆弧的方程;(2)若该城市的某中学拟在点O的正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4公里,并且铁路上任意一点到校址的
7、距离不能小于公里,求该校址距点O的最短距离(注:校址视为一个点)21(12分)已知椭圆:的离心率是,以的长轴和短轴为对角线的四边形的面积是.(1)求的方程;(2)直线与交于,两点,是上一点,若四边形是平行四边形,求的坐标.22(10分)某蔬菜加工厂加工一种蔬菜,并对该蔬菜产品进行质量评级,现对甲、乙两台机器所加工的蔬菜产品随机抽取一部分进行评级,结果(单位:件)如表1:(1)若规定等级为合格等级,等级为优良等级,能否有的把握认为“蔬菜产品加工质量与机器有关”?(2)表2是用清水千克清洗该蔬菜千克后,该蔬菜上残留的农药微克的统计表,若用解析式作为与的回归方程,求出与的回归方程.(结果精确到)(参
8、考数据:,.)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先分组再排序,可得知这人所包扶的户数分别为、或、,然后利用分步计数原理可得出所求方案的数目.【详解】由题意可知,这人所包扶的户数分别为、或、,利用分步计数原理知,不同的包扶方案种数为,故选C.【点睛】本题考查排列组合的综合问题,考查分配问题,求解这类问题遵循先分组再排序的原则,再分组时,要注意平均分组的问题,同时注意分步计数原理的应用,考查分析问题和解决问题的能力,属于中等题.2、D【解析】分析:根据全称命题的否定解答.详解:由全称命题的否定得为:,故答案为
9、D.点睛:(1)本题主要考查全称命题的否定,意在考查学生对这些知识的掌握水平.(2) 全称命题:,全称命题的否定():.3、C【解析】根据正态曲线的对称性,以及,可得结果.【详解】,故选:C【点睛】本题考查正态分布,重点把握正态曲线的对称性,属基础题.4、B【解析】试题分析:设没有发芽的种子数为,则,所以考点:二项分布【方法点睛】一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布XB(n,p),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.
10、5、A【解析】由,可推出,可以判断出中至少有一个大于1.由可以推出,与1的关系不确定,这样就可以选出正确答案.【详解】因为,所以,显然中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符.由,可得,与1的关系不确定,显然由“”可以推出,但是由推不出,当然可以举特例:如,符合,但是不符合,因此“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分不必要条件的判断,由,判断出中至少有一个大于1,是解题的关键.6、A【解析】先求得函数的导函数,再对导函数求导,然后利用特殊点对选项进行排除,由此得出正确选项.【详解】依题意,令,则.由于,故排除C选项.
11、由于,故在处导数大于零,故排除B,D选项.故本小题选A.【点睛】本小题主要考查导数的运算,考查函数图像的识别,属于基础题.7、B【解析】特称命题的否定是全称命题。【详解】特称命题的否定是全称命题,所以,有成立的否定是,有成立,故选B.【点睛】本题考查特称命题的否定命题,属于基础题。8、B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;由函数的单调性,判断图象的变化趋势;由函数的奇偶性,判断图象的对称性;由函数
12、的周期性,判断图象的循环往复 9、D【解析】采用赋值法,令得:求出各项系数之和,减去项系数即为所求【详解】展开式中,令得展开式的各项系数和为 而展开式的的通项为 则展开式中含项系数为 故的展开式中不含项的各项系数之和为 故选D.【点睛】考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反10、A【解析】令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x【详解】令xex=t,构造g(x)=xex,求导得g(x)=故g(x)在-,1上单调递增,在1,+上单调递减,且x0时,g(x)0时,g(x)0,g(x)max=g(
13、1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a0,即t1+t2=-a0t1故1-x若a4t1故选A. 【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.11、B【解析】根据题目可知,过作准线的垂线,垂足为,则由抛物线的定义,结合,可得,设的倾斜角为,当取得最大值时,最小,此时直线与抛物线相切,即可求出的的坐标,再利用双曲线的定义,即可求得双曲线得离心率。【详解】由题意知,由对称性不妨设P点在y轴的右侧,过作准线的垂线,垂足为,则根据则抛物线的定义,可得,设的倾斜角为,当取得最大值时,最小,此时直线与抛物线相切,
14、设直线的方程为,与联立,得,令,解得可得,又此时点P恰好在以A、B为焦点的双曲线上双曲线的实轴故答案选B。【点睛】本题主要考查了双曲线与抛物线的性质的应用,在解决圆锥曲线相关问题时常用到方程思想以及数形结合思想。12、A【解析】复数是纯虚数,必有利用充分条件与必要条件的定义可得结果.【详解】若复数是纯虚数,必有所以由能推出;但若,不能推出复数是纯虚数. 所以由不能推出.,因此是充分不必要条件,故选A.【点睛】本题主要考查复数的基本概念以及充分条件与必要条件的定义,属于简单题. 判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的
15、命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】做出满足条件的可行域,根据图形即可求解.【详解】约束条件表示的可行域如图中阴影部分所示.由得,则目标函数过点时,取得最大值,.故答案为:1【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.14、64 【解析】根据三视图可得该几何体表示一个四棱锥,且四棱锥的底面是一个长为8,宽为6的矩形,其中高为4,即可利用体积公式和表面积公式求解,得到答案.
16、【详解】由题意可知,这个几何体是一个四棱锥,且四棱锥的底面是一个长为8,宽为6的矩形,四棱锥高为4,所以四棱锥的体积为,四棱锥的侧面为等腰三角形,底边长分别为,斜高分别为,所以侧面积为.【点睛】本题主要考查了空间几何体的三视图的应用,以及四棱锥的体积与侧面积的计算,其中解答中根据几何体的三视图得到几何体的结构特征是解答的关键,着重考查了推理与运算能力,属于基础题.15、13;【解析】设球的半径为,得到截面圆的半径为,球心距为,再由,列出方程,即可求解.【详解】设球的半径为,将球取出,留下空穴的直径为,深,则截面圆的半径为,球心距为,又由,即,化简得,解得.故答案为:.【点睛】本题主要考查了球的
17、几何特征,其中解答中根据球的半径,截面圆的半径,以及球心距构造直角三角形,利用勾股定理列出方程是解答的关键,着重考查了推理与计算能力,属于基础题.16、1【解析】由程序框图知该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【详解】模拟执行如图所示的程序框图如下,判断,第1次执行循环体后,;判断,第2次执行循环体后,;判断,第3次执行循环体后,;判断,退出循环,输出的值为1【点睛】本题主要考查对含有循环结构的程序框图的理解,模拟程序运算可以较好地帮助理解程序的算法功能三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();
18、().【解析】分析:()把整合成,再利用就可以得到曲线的直角坐标方程;()因为在椭圆上且在第一象限,故可设,从而所求面积可用的三角函数来表示,求出该函数的最大值即可.详解:()由题可变形为,.()由已知有,设,.于是由 ,由得,于是,四边形最大值.点睛:直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.另一方面,当动点在圆锥曲线运动变化时,我们可用一个参数来表示动点坐标,从而利用一元函数求与动点有关的最值问题.18、 【解析】分析:由列方程求出a和b的值,求得矩阵A,|A|及,由即可求得.详解:依题意得 所以
19、 所以A 因为|A|1(1)021,所以 点睛:本题主要考查矩阵的变换和逆矩阵的求法,意在考查学生对这些基础知识的掌握水平和基本的运算能力. 19、 (1)(i);(ii)6.415万台;(2)7839.3元.【解析】分析:(1)(i)根据平均数公式可求出与的值,从而可得样本中心点的坐标,从而求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得关于的回归方程;(ii)将代入所求回归方程,即可的结果;(2)由题知9月份日销量(万台)服从正态分布,则,根据正态曲线的对称性求出各区间上的概率,进而可得结果.详解:(1)(i)因为所以,所以关于的线性回归方程为(ii)当时,(万台)(注:若,当时,(万台)第(1)小问共得5分,即扣1分)(2)由题知9月份日销量(万台)服从正态分布.则.日销量的概率为.日销量的概率为.日销量的概率为.所以每位员工当月的奖励金额总数为元点睛:求回归直线方程的步骤:依据样本数确定两个变量具有线性相关关系;计算的值;计算回归系数;写出回归直线方程为; 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20、(1)(;(2).【解析】(1)以垂直的直线为轴建立平面直角坐标系,设圆心坐标为,由圆心到两点的距离相等求出,即圆心坐标,再求出半径,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化验员安全考核制度
- 传菜员绩效考核制度
- 饮料厂绩效考核制度
- 信访局干部考核制度
- 收费室绩效考核制度
- 樊登读书会考核制度
- 2026年茶艺师(高级)试题及答案
- nba知识竞赛题库及答案
- 高级心理咨询真题及答案
- 医院感染暴发应急试卷含答案
- 高标准农田建设安全文明施工方案
- 店铺安全生产制度
- 2025年及未来5年中国水晶市场竞争格局及行业投资前景预测报告
- 2025广东云浮新兴县特聘动物防疫专员招募2人考试参考题库及答案解析
- 成人重症患者人工气道湿化护理专家共识解读
- 品牌营销与市场推广服务协议
- 再审被申请人意见书
- 基于STS8200测试平台单路LDO芯片测试方案设计
- T/CSPSTC 121-2023海底管道水平定向钻设计规范
- 创新医疗供应链管理模式提升医疗服务水平
- 第17课 明朝的灭亡和清朝的建立【分层作业】【教学评一体化】大单元整体教学 部编版历史七年级下册
评论
0/150
提交评论