版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省绿春县高级中学2026届高一数学第二学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列an的前n项和为Sn,若a8=12,S8A.-2 B.2 C.-1 D.12.棱长都是1的三棱锥的表面积为()A. B. C. D.3.已知函数,则A.f(x)的最小正周期为π B.f(x)为偶函数C.f(x)的图象关于对称 D.为奇函数4.设的内角,,所对的边分别为,,,且,,面积的最大值为()A.6 B.8 C.7 D.95.下列函数中同时具有性质:①最小正周期是,②图象关于点对称,③在上为减函数的是()A. B.C. D.6.在正方体中,异面直线与所成的角为()A.30° B.45° C.60° D.90°7.棱柱的侧面一定是()A.平行四边形 B.矩形 C.正方形 D.菱形8.设函数是上的偶函数,且在上单调递减.若,,,则,,的大小关系为()A. B. C. D.9.在中任取一实数作为x,则使得不等式成立的概率为()A. B. C. D.10.已知是公差不为零的等差数列,其前项和为,若成等比数列,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设满足约束条件若目标函数的最大值为,则的最小值为_________.12.在中,角,,所对的边分别为,,,若,则为______三角形.13.设表示不超过的最大整数,则________14.已知为等差数列,为其前项和,若,则,则______.15.若点在幂函数的图像上,则函数的反函数=________.16.在平行六面体中,为与的交点,若存在实数,使向量,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.18.已知向量,向量,向量,记与的夹角为.(Ⅰ)求(Ⅱ)求向量与向量的夹角的取值范围.19.动直线m:3x+8y+3λx+λy+21=0(λ∈R)过定点M,直线l过点M且倾斜角α满足cosα,数列{an}的前n项和为Sn,点P(Sn,an+1)在直线l上.(1)求数列{an}的通项公式an;(2)设bn,数列{bn}的前n项和Tn,如果对任意n∈N*,不等式成立,求整数k的最大值.20.已知函数.(1)求函数图象的对称轴方程;(2)若对于任意的,恒成立,求实数的取值范围.21.设函数.(1)已知图象的相邻两条对称轴的距离为,求正数的值;(2)已知函数在区间上是增函数,求正数的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
直角利用待定系数法可得答案.【详解】因为S8=8a1+a82【点睛】本题主要考查等差数列的基本量的相关计算,难度不大.2、A【解析】
三棱锥的表面积为四个边长为1的等边三角形的面积和,故,故选A.3、C【解析】对于函数,它的最小正周期为=4π,故A选项错误;函数f(x)不满足f(–x)=f(x),故f(x)不是偶函数,故B选项错误;令x=,可得f(x)=sin0=0,故f(x)的图象关于对称,C正确;由于f(x–)=sin(x–)=–sin(x)=–cos(x)为偶函数,故D选项错误,故选C.4、D【解析】
由已知利用基本不等式求得的最大值,根据三角形的面积公式,即可求解,得到答案.【详解】由题意,利用基本不等式可得,即,解得,当且仅当时等号成立,又因为,所以,当且仅当时等号成立,故三角形的面积的最大值为,故选D.【点睛】本题主要考查了基本不等式的应用,以及三角形的面积公式的应用,着重考查了转化思想,以及推理与运算能力,属于基础题.5、C【解析】
根据周期公式排除A选项;根据正弦函数的单调性,排除B选项;将代入函数解析式,排除D选项;根据周期公式,将代入函数解析式,余弦函数的单调性判断C选项正确.【详解】对于A项,,故A错误;对于B项,,,函数在上单调递增,则函数在上单调递增,故B错误;对于C项,;当时,,则其图象关于点对称;当,,函数在区间上单调递减,则函数在区间单调递减,故C正确;对于D项,当时,,故D错误;故选:C【点睛】本题主要考查了求正余弦函数的周期,单调性以及对称性的应用,属于中档题.6、C【解析】
首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接.因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.7、A【解析】根据棱柱的性质可得:其侧面一定是平行四边形,故选A.8、B【解析】
根据偶函数的定义可变形,再直接比较的大小关系,即可利用函数的单调性得出,,的大小关系.【详解】因为函数是上的偶函数,所以,而,函数在上单调递减,所以.故选:B.【点睛】本题主要考查函数的性质的应用,涉及奇偶性,指数函数,对数函数的单调性,以及对数的运算性质的应用,属于基础题.9、C【解析】
先求解不等式,再利用长度型的几何概型概率公式求解即可【详解】由题,因为,解得,则,故选:C【点睛】本题考查长度型的几何概型,考查解对数不等式10、B【解析】∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.12、等腰或直角【解析】
根据正弦定理化简得到,得到,故或,得到答案.【详解】利用正弦定理得到:,化简得到即故或故答案为等腰或直角【点睛】本题考查了正弦定理和三角恒等变换,漏解是容易发生的错误.13、【解析】
根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【详解】故答案为:【点睛】本题主要考查了三角函数的计算,属于基础题型.14、【解析】
利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【点睛】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.15、【解析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】
在平行六面体中把向量用用表示,再利用待定系数法,求得.再求解。【详解】如图所示:因为,又因为,所以,所以.故答案为:【点睛】本题主要考查了空间向量的基本定理,还考查了运算求解的能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)构造数列等差数列求得的通项公式,再进行求和,再利用裂项相消求得;
(2)由题出现,故考虑用分为偶数和奇数两种情况进行计算.【详解】(1)由得,即,所以是以为首项,1为公差的等差数列,故,故.所以,故.
(2)当为偶数时,,当为奇数时,为偶数,
综上所述,当为偶数时,,当为奇数时,即.【点睛】本题主要考查了等差数列定义的应用,考查构造法求数列的通项公式与裂项求和及奇偶并项求和的方法,考查了分析问题的能力及逻辑推理能力,属于中档题.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由向量夹角公式可求,再由三角函数的诱导公式,化简得原式,利用三角函数的基本关系式,即可求解.(Ⅱ)作出图象,结合直角中,求得,进而得到,,即可求得向量与向量的夹角的取值范围.【详解】(Ⅰ)由向量夹角公式可求,又由,因为,所以,故原式=.(Ⅱ)如图所示,向量的终点在以点为圆心、半径为的圆上,是圆的两条切线,切点分别为,在直角中,,可得,即所以,因为,所以,,所以向量与向量的夹角的取值范围是.【点睛】本题主要考查了向量的数量积的运算公式,向量的夹角公式的应用,以及诱导公式的化简求值问题,其中解答中熟记向量的夹角公式和向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于中档试题.19、(1)an=6•(﹣1)n﹣1;(1)最大值为1.【解析】
(1)由直线恒过定点可得M(1,﹣3),求得直线l的方程,可得an+6=1Sn,运用数列的递推式和等比数列的通项公式,可得所求;(1)bn•(﹣1)n﹣1,讨论n为偶数或奇数,可得Tn,再由不等式恒成立问题解法,可得所求k的范围,可得最大值.【详解】(1)3x+8y+3λx+λy+11=0即为(3x+8y+11)+λ(3x+y)=0,由3x+y=0且3x+8y+11=0,解得x=1,y=﹣3,可得M(1,﹣3),可得直线l的斜率为tanα1,即直线l的方程为y+3=1(x﹣1),即有y=1x﹣5,即有an+1=1Sn﹣5,即an+6=1Sn,当n=1时,可得a1+6=1S1=1a1,即a1=6,n≥1时,an﹣1+6=1Sn﹣1,又an+6=1Sn,相减可得1an=an﹣an﹣1,即an=﹣an﹣1,可得数列{an}的通项公式an=6•(﹣1)n﹣1;(1)bn,即bn•(﹣1)n﹣1,当n为偶数时,Tnn;当n为奇数时,Tnn,当n为偶数时,不等式成立,即为1n﹣7即k≤1n﹣1,可得k≤1;当n为奇数时,不等式成立,即为1n﹣7即4k≤6n﹣1,可得k,综上可得k≤1,即k的最大值为1.【点睛】本题考查数列的递推式的运用,直线方程的运用,数列的分组求和,以及不等式恒成立问题解法,考查化简运算能力,属于中档题.20、(1)(2)【解析】
(1)通过三角恒等变形,化简为的形式,方便我们去研究与其相关的任何问题;(2)恒成立,可转化,我们只需要求出最大值从而完成本题.【详解】(1)令得,所以的对称轴为(2)当时,,,因为,即恒成立故,解得【点睛】在研究三角函数相关的性质(值域、对称中心、对称轴、单调性……)我们都是将其化为(或者余弦、正切相对应)的形式,利用整体思想,我们能比较方便的去研究他们相关性质.21、(1)1;(2).【解析】
(1)由二倍角公式可化函数为,结合正弦函数的性质可得;(2)先求得的增区间,其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年环境科学专业考试大气污染治理技术与方法选择题集
- 2026年网络直播运营网络平台运营实操练习题
- 2026年经济金融学金融市场经济分析经济知识竞赛题
- 2026年历史知识复习题库古代文明发展历程题
- 2026年经济师考试模拟题碳排放权交易市场分析与预测
- 2026年计算机二级C语言程序设计练习题
- 2026年食品安全法规检查员考试题
- 2026年医学专业考试题库临床医学基础知识练习题
- 2026年职业规划指导职业能力倾向测试题
- 2026年计算机编程基础及算法应用试题集
- 类脂性肺炎护理查房
- 租场地的合同协议书
- 直播代播服务合同协议
- 手工麻绳瓶子课件
- 山东单招英语试题及答案
- 剧院音效优化穿孔吸音板施工方案
- 酒店委托管理合同范本
- 丽声北极星分级绘本第一级下-Caterpillars Home教学课件
- (正式版)SHT 3115-2024 石油化工管式炉轻质浇注料衬里工程技术规范
- 全员营销培训教材课件
- 托幼机构教育质量测评
评论
0/150
提交评论