版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省驻马店市2026届高一数学第二学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角,,的对边分别为,,.已知,则()A. B. C. D.2.在△ABC中,D是边BC的中点,则=A. B. C. D.3.函数(其中,)的部分图象如图所示、将函数的图象向左平移个单位长度,得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的单调递增区间为C.函数为偶函数D.函数的图象的对称轴为直线4.已知,且,则()A. B. C. D.5.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.6.正四棱柱的高为3cm,体对角线长为cm,则正四棱柱的侧面积为()A.10 B.24 C.36 D.407.已知,则=()A. B. C. D.8.在三棱锥中,平面,,,,,则三棱锥外接球的体积为()A. B. C. D.9.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查。若高中需抽取20名学生,则小学与初中共需抽取的人数为()A.30 B.40 C.70 D.9010.已知向量,,,且,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,,,则公差______.12.已知是奇函数,且,则_______.13.若数列满足,,则数列的通项公式______.14.已知数列的通项公式为,的前项和为,则___________.15.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.16.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,分别是内角所对的边,已知.(1)求角;(2)若,求的周长.18.已知数列是递增的等比数列,且(Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前n项和,,求数列的前n项和.19.已知,求(1)(2)20.已知方程有两根、,且,.(1)当,时,求的值;(2)当,时,用表示.21.是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为,,,,).(1)求选取的市民年龄在内的人数;(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由正弦定理,整理得到,即可求解,得到答案.【详解】在中,因为,由正弦定理可得,因为,则,所以,即,又因为,则,故选A.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练应用正弦定理的边角互化,以及特殊角的三角函数是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】分析:利用平面向量的减法法则及共线向量的性质求解即可.详解:因为是的中点,所以,所以,故选C.点睛:本题主要考查共线向量的性质,平面向量的减法法则,属于简单题.3、B【解析】
本题首先可以根据题目所给出的图像得出函数的解析式,然后根据三角函数平移的相关性质以及函数的解析式得出函数的解析式,最后通过函数的解析式求出函数的单调递增区间,即可得出结果.【详解】由函数的图像可知函数的周期为、过点、最大值为3,所以,,,,,所以取时,函数的解析式为,将函数的图像向左平移个单位长度得,当时,即时,函数单调递增,故选B.【点睛】本题考查三角函数的相关性质,主要考查三角函数图像的相关性质以及三角函数图像的变换,函数向左平移个单位所得到的函数,考查推理论证能力,是中档题.4、D【解析】
根据不等式的性质,一一分析选择正误即可.【详解】根据不等式的性质,当时,对于A,若,则,故A错误;对于B,若,则,故B错误;对于C,若,则,故C错误;对于D,当时,总有成立,故D正确;故选:D.【点睛】本题考查不等式的基本性质,属于基础题.5、C【解析】
利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.6、B【解析】
设正四棱柱,设底面边长为,由正四棱柱体对角线的平方等于从同一顶点出发的三条棱的平方和,可得关于的方程.【详解】如图,正四棱柱,设底面边长为,则,解得:,所以正四棱柱的侧面积.【点睛】本题考查正棱柱的概念,即底面为正方形且侧棱垂直于底面的几何体,考查几何体的侧面积计算.7、C【解析】由得:,所以,故选D.8、B【解析】
在三棱锥中,求得,又由底面,所以,在直角中,求得,进而得到三棱锥外接球的直径,得到,利用体积公式,即可求解.【详解】由题意知,在三棱锥中,,,,所以,又由底面,所以,在直角中,,所以,根据球的性质,可得三棱锥外接球的直径为,即,所以球的体积为,故选B.【点睛】本题主要考查了与球有关的组合体中球的体积的计算,其中解答中根据组合体的结构特征和球的性质,准确求解球的半径是解答的关键,着重考查了推理与运算能力,属于中档试题.9、C【解析】
根据高中抽取的人数和高中总人数计算可得抽样比;利用小学和初中总人数乘以抽样比即可得到结果.【详解】由题意可得,抽样比为:则小学和初中共抽取:人本题正确选项:【点睛】本题考查分层抽样中样本数量的求解,关键是能够明确分层抽样原则,准确求解出抽样比,属于基础题.10、C【解析】
由可得,代入求解可得,则,进而利用诱导公式求解即可【详解】由可得,即,所以,因为,所以,则,故选:C【点睛】本题考查垂直向量的应用,考查里利用诱导公式求三角函数值二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
根据等差数列公差性质列式得结果.【详解】因为,,所以.【点睛】本题考查等差数列公差,考查基本分析求解能力,属基础题.12、【解析】
根据奇偶性定义可知,利用可求得,从而得到;利用可求得结果.【详解】为奇函数又即,解得:本题正确结果:【点睛】本题考查根据函数的奇偶性求解函数值的问题,属于基础题.13、【解析】
在等式两边取倒数,可得出,然后利用等差数列的通项公式求出的通项公式,即可求出.【详解】,等式两边同时取倒数得,.所以,数列是以为首项,以为公差的等差数列,.因此,.故答案为:.【点睛】本题考查利用倒数法求数列通项,同时也考查了等差数列的定义,考查计算能力,属于中等题.14、【解析】
计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.15、32【解析】
根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.16、②③④【解析】
首先化简函数解析式,逐一分析选项,得到答案.【详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【点睛】本题考查了三角函数的化简和三角函数的性质,属于中档题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)6【解析】
(1)由条件利用正弦定理求B的某个函数值,结合B的范围确定B的大小.(2)由(1)及求得ac,再利用余弦定理可得.【详解】解:(1)因为,由正弦定理可得,又,所以,则,因为,所以;(2)由已知,所以,由余弦定理得,所以,则,因此的周长为6.【点睛】本题考查正弦定理、余弦定理及三角形面积计算,有时利用整体运算可以起到事半功倍的作用,考查计算能力,属于中档题.18、(Ⅰ)(Ⅱ)【解析】试题分析:(1)设等比数列的公比为q,,根据已知由等比数列的性质可得,联立解方程再由数列为递增数列可得则通项公式可得(2)根据等比数列的求和公式,有所以,裂项求和即可试题解析:(1)设等比数列的公比为q,所以有联立两式可得或者又因为数列为递增数列,所以q>1,所以数列的通项公式为(2)根据等比数列的求和公式,有所以所以考点:等比数列的通项公式和性质,数列求和19、(1)(2)【解析】
利用同角三角函数基本关系式化弦为切,即可求解(1)(2)的值,得到答案.【详解】(1)由题意,知,则;(2)由==.【点睛】本题主要考查了三角函数的化简求值,以及同角三角函数基本关系式的应用,着重考查了推理与运算能力,属于基础题.20、(1);(2).【解析】
(1)由反三角函数的定义得出,,再由韦达定理结合两角和的正切公式求出的值,并求出的取值范围,即可得出的值;(2)由韦达定理得出,,再利用两角和的正切公式得出的表达式,利用二倍角公式将等式两边化为正切,即可用表示.【详解】(1)由反三角函数的定义得出,,当,时,由韦达定理可得,,易知,,,,则.由两角和的正切公式可得,;(2)由韦达定理得,,所以,,,,又由得,则,则、至少一个是正数,不妨设,则,又,,易知,,因此,.【点睛】本题考查反正切的定义,考查两角和的正切公式的应用,同时涉及了二次方程根与系数的关系以及二倍角公式化简,在利用同角三角函数的基本关系解题时,需要对角的范围进行讨论,考查运算求解能力,属于中等题.21、(1)30人;(2).【解析】
(1)由频率分布直方图,先求出年龄在内的频率,进而可求出人数;(2)先由分层抽样,确定应从第3,4组中分别抽取3人,2人,记第3组的3名志愿者分别为,第4组的2名志愿者分别为,再用列举法,分别列举出总的基本事件,以及满足条件的基本事件,基本事件个数比即为所求概率.【详解】(1)由题意可知,年龄在内的频率为,故年龄在内的市民人数为.(2)易知,第4组的人数为,故第3,4组共有50名市民,所以用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 短歌行公开课获奖课件
- 2026年经济学统计数据与市场预测题
- 2026年数据分析师招聘笔试题目数据分析数据可视化专业考题
- 2026年金融分析师投资组合理论与应用专业题库
- 2026年心理测试分析题判断个人的性格类型
- 2026年金融投资顾问资格考试题库市场分析与风险管理题
- 2026年金融投资专业知识题库股票市场分析与投资策略问题
- 2026年经济热点问题深度解读与测试题
- 2026年文学作品鉴赏试题红楼梦中的女性形象分析
- 2026年数据分析与数据可视化练习题
- 2026年标准版离婚协议书(有财产)
- 养老院电气火灾培训课件
- 中国工商银行2025年度春季校园招聘笔试历年典型考题及考点剖析附带答案详解
- 2026年类器官芯片技术项目商业计划书
- 2026北京西城初二上学期期末数学试卷和答案
- 中国家庭财富与消费报告2025年第三季度
- 马年猜猜乐(马的成语)打印版
- 2026年及未来5年市场数据中国磷化铟行业市场调研分析及投资战略咨询报告
- 过去进行时(总结)
- 物业节前安全教育培训
- GB/T 37507-2025项目、项目群和项目组合管理项目管理指南
评论
0/150
提交评论