2026届四川省攀枝花市属高中高一下数学期末预测试题含解析_第1页
2026届四川省攀枝花市属高中高一下数学期末预测试题含解析_第2页
2026届四川省攀枝花市属高中高一下数学期末预测试题含解析_第3页
2026届四川省攀枝花市属高中高一下数学期末预测试题含解析_第4页
2026届四川省攀枝花市属高中高一下数学期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届四川省攀枝花市属高中高一下数学期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元2.设为等差数列的前n项和,若,则使成立的最小正整数n为()A.6 B.7 C.8 D.93.函数图像的一个对称中心是()A. B. C. D.4.已知等比数列的公比为正数,且,则()A. B. C. D.5.在ΔABC中,内角A,B,C的对边分别为a,b,c.若3asinC=A.π6 B.π3 C.2π6.设等差数列的前项和为,若公差,,则的值为()A.65 B.62 C.59 D.567.在正方体中,与所成的角为()A.30° B.90° C.60° D.120°8.已知平面四边形满足,,,则的长为()A.2 B. C. D.9.直线y=﹣x+1的倾斜角是()A.30∘ B.45∘ C.13510.已知{an}是等差数列,且a2+a5+a8+a11=48,则a6+a7=()A.12 B.16 C.20 D.24二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则的值为.12.函数单调递减区间是.13.数列中,如果存在使得“,且”成立(其中,),则称为的一个“谷值”。若且存在“谷值”则实数的取值范围是__________.14.如果函数的图象关于直线对称,那么该函数在上的最小值为_______________.15.已知,,,则的最小值为__________.16.如图,长方体中,,,,与相交于点,则点的坐标为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.18.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.19.已知向量是夹角为的单位向量,,(1)求;(2)当m为何值时,与平行?20.已知(且)是R上的奇函数,且.(1)求的解析式;(2)若关于x的方程在区间内只有一个解,求m的取值集合;(3)设,记,是否存在正整数n,使不得式对一切均成立?若存在,求出所有n的值,若不存在,说明理由.21.为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设屋子的左右两面墙的长度均为x米(3≤x≤6).(Ⅰ)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价.(Ⅱ)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为1800a(1+x)x元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】∵,∵数据的样本中心点在线性回归直线上,

回归方程中的为9.4∴线性回归方程是y=9.4x+9.1,

∴广告费用为6万元时销售额为9.4×6+9.1=65.5,

故选B.2、C【解析】

利用等差数列下标和的性质可确定,,,由此可确定最小正整数.【详解】且,使得成立的最小正整数故选:【点睛】本题考查等差数列性质的应用问题,关键是能够熟练应用等差数列下标和性质化简前项和公式.3、B【解析】

由题得,解出x的值即得函数图像的一个对称中心.【详解】由题得,所以,所以图像的对称中心是.当k=1时,函数的对称中心为.故选B【点睛】本题主要考查三角函数图像的对称中心的求法,意在考查学生对该知识的理解掌握水平,属于基础题.4、D【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,故选D.5、A【解析】

根据正弦定理asinA=csinC将题干等式化为3sinAsin【详解】∵3asinC=3ccosA,所以3sinAsin【点睛】本题考查运用正弦定理求三角形内角,属于基础题。6、A【解析】

先求出,再利用等差数列的性质和求和公式可求.【详解】,所以,故选A.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.7、C【解析】

把异面直线与所成的角,转化为相交直线与所成的角,利用为正三角形,即可求解.【详解】连结,则,所以相交直线与所成的角,即为异面直线与所成的角,连结,则是正三角形,所以,即异面直线与所成的角,故选C.【点睛】本题主要考查了空间中异面直线及其所成角的求法,其中根据异面直线的定义,把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解析】

先建系,再结合两点的距离公式、向量的数量积及模的运算,求解即可得解.【详解】解:建立如图所示的平面直角坐标系,则,设,由,则,所以,又,所以,,即,故选:B.【点睛】本题考查了两点的距离公式,重点考查了向量的数量积运算及模的运算,属中档题.9、C【解析】

由直线方程可得直线的斜率,进而可得倾斜角.【详解】直线y=﹣x+1的斜率为﹣1,设倾斜角为α,则tanα=﹣1,∴α=135°故选:C.【点睛】本题考查直线的倾斜角和斜率的关系,属基础题.10、D【解析】由等差数列的性质可得,则,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

,故答案为3.12、【解析】

先求出函数的定义域,找出内外函数,根据同增异减即可求出.【详解】由,解得或,所以函数的定义域为.令,则函数在上单调递减,在上单调递增,又为增函数,则根据同增异减得,函数单调递减区间为.【点睛】复合函数法:复合函数的单调性规律是“同则增,异则减”,即与若具有相同的单调性,则为增函数,若具有不同的单调性,则必为减函数.13、【解析】

求出,,,当,递减,递增,分别讨论,,是否存在“谷值”,注意运用单调性即可.【详解】解:当时,有,,当,递减,递增,且.若时,有,则不存在“谷值”;若时,,则不存在“谷值”;若时,①,则不存在"谷值";②,则不存在"谷值";③,存在"谷值"且为.综上所述,的取值范围是故答案为:【点睛】本题考查新定义及运用,考查数列的单调性和运用,正确理解新定义是迅速解题的关键,是一道中档题.14、【解析】

根据三角公式得辅助角公式,结合三角函数的对称性求出值,再利用的取值范围求出函数的最小值.【详解】解:,令,则,则.因为函数的图象关于直线对称,所以,即,则,平方得.整理可得,则,所以函数.因为,所以,当时,即,函数有最小值为.故答案为:.【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.15、25【解析】

变形后,利用基本不等式可得.【详解】当且仅当,即,时取等号.故答案为:25【点睛】本题考查了利用基本不等式求最值,属于基础题.16、【解析】

易知是的中点,求出的坐标,根据中点坐标公式求解.【详解】可知,,由中点坐标公式得的坐标公式,即【点睛】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】

(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使成立的有两个,又由知,与一一对应,故当时,有两不等实根;(2)因为,所以,所以,令,则,令,设,则,因为,所以,即在上是增函数,所以,设,则.(i)当时,的最小值为,所以,解得,或4(舍去);(ii)当时,的最小值为,不合题意;(iii)当时,的最小值为,所以,解得,或(舍去).综上知,或.【点睛】本题主要考查了函数的综合应用,其中解答中涉及到函数的奇偶性,对数函数的图象与性质,以及换元法和分类讨论思想的应用,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.18、(1)(2)符合【解析】

:(1)先列举出从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件,再列举其中年人均用水量都不超过30吨的基本事件,最后计算即可.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意计算该城市年人均用水量不超过30吨的居民用户的百分率.【详解】解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34)共10个.其中年人均用水量都不超过30吨的基本事件是:(19,25),(19,28),(25,28)共3个.设“从5户郊区居民用户中随机抽取2户,其年人均用水量都不超过30吨”的事件为,则所求的概率为.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意,该城市年人均用水量不超过30吨的居民用户的百分率为:.故此方案符合国家“保基本”政策.【点睛】本题考查了古典概型在实际生活中的应用,要紧扣题意从题目中抽象出数学计算的模型.19、(1)1;(2)﹣6【解析】

(1)利用单位向量的定义,直接运算即可;(2)利用,有,得出,然后列方程求解即可【详解】解:(1);(2)当,则存在实数使,所以不共线,得,【点睛】本题考查向量平行的定义,注意列方程运算即可,属于简单题20、(1);(2)m的取值集合或}(3)存在,【解析】

(1)利用奇函数的性质得到关于实数k的方程,解方程即可,注意验证所得的结果;(2)结合函数的单调性和函数的奇偶性脱去f的符号即可;(3)可得,即可得:即可.【详解】(1)由奇函数的性质可得:,解方程可得:.此时,满足,即为奇函数.的解析式为:;(2)函数的解析式为:,结合指数函数的性质可得:在区间内只有一个解.即:在区间内只有一个解.(i)当时,,符合题意.(ii)当时,只需且时,,此时,符合题意综上,m的取值集合或}(3)函数为奇函数关于对称又当且仅当时等号成立所以存在正整数n,使不得式对一切均成立.【点睛】本题考查了复合型指数函数综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于难题.21、(Ⅰ)4米时,28800元;(Ⅱ)0<a<12.25.【解析】

(Ⅰ)设甲工程队的总造价为y元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论