江苏省徐州侯集高级中学2026届高一下数学期末考试模拟试题含解析_第1页
江苏省徐州侯集高级中学2026届高一下数学期末考试模拟试题含解析_第2页
江苏省徐州侯集高级中学2026届高一下数学期末考试模拟试题含解析_第3页
江苏省徐州侯集高级中学2026届高一下数学期末考试模拟试题含解析_第4页
江苏省徐州侯集高级中学2026届高一下数学期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省徐州侯集高级中学2026届高一下数学期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()A. B. C. D.2.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则()A. B. C. D.3.设向量,满足,,则()A.1 B.2 C.3 D.54.在中,已知a,b,c分别为,,所对的边,且a,b,c成等差数列,,,则()A. B. C. D.5.在△ABC中,角A、B、C所对的边分别为,己知A=60°,,则B=()A.45° B.135° C.45°或135° D.以上都不对6.若不等式对一切恒成立,则实数的最大值为()A.0 B.2 C. D.37.等比数列中,,则等于()A.16 B.±4 C.-4 D.48.已知圆心在轴上的圆经过,两点,则的方程为()A. B.C. D.9.已知是圆上的三点,()A. B. C. D.10.如图是某几何体的三视图,则该几何体的外接球的表面积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知两个正实数x,y满足=2,且恒有x+2y﹣m>0,则实数m的取值范围是______________12.已知,则的最小值是__________.13.在数列an中,a1=2,a14.在中,角、、所对应边分别为、、,,的平分线交于点,且,则的最小值为______15.已知为的三个内角A,B,C的对边,向量,.若,且,则B=16.数列中,若,,则______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设.(1)若不等式对一切实数恒成立,求实数的取值范围;(2)解关于的不等式(R).18.不等式(1)若不等式的解集为或,求的值(2)若不等式的解集为,求的取值范围19.在平面直角坐标系下,已知圆O:,直线l:()与圆O相交于A,B两点,且.(1)求直线l的方程;(2)若点E,F分别是圆O与x轴的左、右两个交点,点D满足,点M是圆O上任意一点,点N在线段上,且存在常数使得,求点N到直线l距离的最小值.20.眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响.(1)分别求甲队总得分为0分;2分的概率;(2)求甲队得2分乙队得1分的概率.21.已知不共线的向量,,,.(1)求与的夹角的余弦值;(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由三视图可知,三棱锥的体积为2、C【解析】

只需根据函数性质逐步得出值即可。【详解】因为为奇函数,∴;又,,又∴,故选C。【点睛】本题考查函数的性质和函数的求值问题,解题关键是求出函数。3、A【解析】

将等式进行平方,相加即可得到结论.【详解】∵||,||,∴分别平方得2•10,2•6,两式相减得4•10﹣6=4,即•1,故选A.【点睛】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4、B【解析】

利用成等差数列可得,再利用余弦定理构造的结构再代入求得即可.【详解】由成等差数列可得,由余弦定理有,即,解得,即.故选:B【点睛】本题主要考查了等差中项与余弦定理的运算,需要根据题意构造与的结构代入求解.属于中档题.5、A【解析】

利用正弦定理求出的值,再结合,得出,从而可得出的值。【详解】由正弦定理得,,,则,所以,,故选:A。【点睛】本题考查利用正弦定理解三角形,要注意正弦定理所适用的基本情形,同时在求得角时,利用大边对大角定理或两角之和不超过得出合适的答案,考查计算能力,属于中等题。6、C【解析】

采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值.【详解】因为不等式对一切恒成立,所以对一切,,即恒成立.令.易知在内为增函数.所以当时,,所以的最大值是.故选C.【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发);(2)参变分离法(考虑新函数与参数的关系).7、D【解析】分析:利用等比中项求解.详解:,因为为正,解得.点睛:等比数列的性质:若,则.8、A【解析】

由圆心在轴上设出圆心坐标,设出圆的方程,将,两点坐标代入,即可求得圆心坐标和半径,进而得圆的方程.【详解】因为圆心在轴上,设圆心坐标为,半径为设圆的方程为因为圆经过,两点代入可得解方程求得所以圆C的方程为故选:A【点睛】本题考查了圆的方程求法,关键是求出圆心和半径,属于基础题.9、C【解析】

先由等式,得出,并计算出,以及与的夹角为,然后利用平面向量数量积的定义可计算出的值.【详解】由于是圆上的三点,,则,,故选C.【点睛】本题考查平面向量的数量积的计算,解题的关键就是要确定向量的模和夹角,考查计算能力,属于中等题.10、B【解析】

由三视图还原几何体,可知该几何体是由边长为的正方体切割得到的四棱锥,可知所求外接球即为正方体的外接球,通过求解正方体外接球半径,代入球的表面积公式可得到结果.【详解】由三视图可知,几何体为如下图所示的四棱锥:由上图可知:四棱锥可由边长为的正方体切割得到该正方体的外接球即为四棱锥的外接球四棱锥的外接球半径外接球的表面积故选:【点睛】本题考查棱锥外接球表面积的求解问题,关键是能够通过三视图还原几何体,并将几何体放入正方体中,通过求解正方体的外接球表面积得到结果;需明确正方体外接球表面积为其体对角线长的一半.二、填空题:本大题共6小题,每小题5分,共30分。11、(-∞,1)【解析】

由x+2y(x+2y)()(1),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.【详解】两个正实数x,y满足2,则x+2y(x+2y)()(1)(1+2)=1,当且仅当x=2y=2时,上式取得等号,x+2y﹣m>0,即为m<x+2y,由题意可得m<1.故答案为:(﹣∞,1).【点睛】本题考查基本不等式的运用:“乘1法”求最值,考查不等式恒成立问题解法,注意运用转化思想,属于中档题.12、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.13、2+【解析】

因为a1∴a∴=(=2+ln14、18【解析】

根据三角形面积公式找到的关系,结合基本不等式即可求得最小值.【详解】根据题意,,因为的平分线交于点,且,所以而所以,化简得则当且仅当,即,时取等号,即最小值为.故答案为:【点睛】本题考查三角形面积公式和基本不等式,考查计算能力,属于中等题型15、【解析】

根据得,再利用正弦定理得,化简得出角的大小。再根据三角形内角和即可得B.【详解】根据题意,由正弦定理可得则所以答案为。【点睛】本题主要考查向量与三角形正余弦定理的综合应用,属于基础题。16、【解析】

先分组求和得,再根据极限定义得结果.【详解】因为,,……,,所以则.【点睛】本题考查分组求和法、等比数列求和、以及数列极限,考查基本求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)由不等式对于一切实数恒成立等价于对于一切实数恒成立,利用二次函数的性质,即可求解,得到答案.(2)不等式化为,根据一元二次不等式的解法,分类讨论,即可求解.【详解】(1)由题意,不等式对于一切实数恒成立,等价于对于一切实数恒成立.当时,不等式可化为,不满足题意;当时,满足,即,解得.(2)不等式等价于.当时,不等式可化为,所以不等式的解集为;当时,不等式可化为,此时,所以不等式的解集为;当时,不等式可化为,①当时,,不等式的解集为;②当时,,不等式的解集为;③当时,,不等式的解集为.【点睛】本题主要考查了不等式的恒成立问题,以及含参数的一元二次不等式的解法,其中解答中熟记一元二次不等式的解法,以及一元二次方程的性质是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.18、(1);(2)【解析】

(1)根据一元二次不等式的解和对应一元二次方程根的关系,求得的值.(2)利用一元二次不等式解集为的条件列不等式组,解不等式组求得的取值范围.【详解】(1)由于不等式的解集为或,所以,解得.(2)由于不等式的解集为,故,解得.故的取值范围是.【点睛】本小题主要考查一元二次不等式的解与对应一元二次方程根的关系,考查一元二次不等式恒成立问题的求解策略,属于基础题.19、(1);(2).【解析】

(1)等价于圆心O到直线l的距离,再由点到直线的距离公式求解即可;(2)先设点,再结合题意可得点N在以为圆心,半径为的圆R上,再结合点到直线的距离公式求解即可.【详解】解:(1)∵圆O:,圆心,半径,∵直线l:()与圆O相交于A,B两点,且,∴圆心O到直线l的距离,又,,解得,∴直线l的方程为;(2)∵点E,F分别是圆O与x轴的左、右两个交点,,∴,,设,,则,,,,,即.又∵点N在线段上,即,共线,,,∵点M是圆O上任意一点,,∴将m,n代入上式,可得,即.则点N在以为圆心,半径为的圆R上.圆心R到直线l:的距离,又,故点N到直线l:距离的最小值为1.【点睛】本题考查了点到直线的距离公式,重点考查了点的轨迹方程的求法,属中档题.20、(1)0分概率;2分概率;(2)【解析】

(1)记“甲队总得分为0分”为事件,“甲队总得分为2分”为事件,分析可知A事件三人都没有答对,按相互独立事件同时发生计算概率,B事件即甲队三人中有1人答错,其余两人答对,由n次独立事件恰有k次发生计算即可(2)记“乙队得1分”为事件,“甲队得2分乙队得1分”为事件,分别有互斥事件概率加法公式及相互独立事件乘法公式计算即可.【详解】(1)记“甲队总得分为0分”为事件,“甲队总得分为2分”为事件,甲队总得分为0分,即甲队三人都回答错误,其概率;甲队总得分为2分,即甲队三人中有1人答错,其余两人答对,其概率;(2)记“乙队

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论