玉树市重点中学2026届高一数学第二学期期末统考模拟试题含解析_第1页
玉树市重点中学2026届高一数学第二学期期末统考模拟试题含解析_第2页
玉树市重点中学2026届高一数学第二学期期末统考模拟试题含解析_第3页
玉树市重点中学2026届高一数学第二学期期末统考模拟试题含解析_第4页
玉树市重点中学2026届高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

玉树市重点中学2026届高一数学第二学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知过点的直线的倾斜角为,则直线的方程为()A. B. C. D.2.已知两条直线,,两个平面,,下面说法正确的是()A. B. C. D.3.已知函数的定义域为,当时,,且对任意的实数,等式恒成立,若数列满足,且,则的值为()A.4037 B.4038 C.4027 D.40284.设是等比数列,有下列四个命题:①是等比数列;②是等比数列;③是等比数列;④是等差数列.其中正确命题的个数是()A. B. C. D.5.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升6.设的内角A,B,C所对的边分别为a,b,c.若,,则角()A. B. C. D.7.已知向量若与平行,则实数的值是()A.-2 B.0 C.1 D.28.已知m个数的平均数为a,n个数的平均数为b,则这个数的平均数为()A. B. C. D.9.下列事件是随机事件的是(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在℃时结冰(4)任意掷一枚骰子朝上的点数是偶数A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)10.从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列中,,,设为数列的前项和,则_________.12.已知,,,则的最小值为__________.13.已知直线:与直线:平行,则______.14.已知,则______;的最小值为______.15.已知,为第二象限角,则________16.在正方体中,是的中点,连接、,则异面直线、所成角的正弦值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;18.涡阳县某华为手机专卖店对市民进行华为手机认可度的调查,在已购买华为手机的名市民中,随机抽取名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:分组(岁)频数合计(1)求频数分布表中、的值,并补全频率分布直方图;(2)在抽取的这名市民中,从年龄在、内的市民中用分层抽样的方法抽取人参加华为手机宣传活动,现从这人中随机选取人各赠送一部华为手机,求这人中恰有人的年龄在内的概率.19.已知为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值.20.已知函数.(1)求函数的定义域;(2)当为何值时,等式成立?21.若,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解.【详解】∵直线的倾斜角为,∵直线的斜率,又直线过点,由直线方程的点斜式可得直线的方程为,即.故选:B.【点睛】本题考查直线的点斜式方程,考查直线的倾斜角与斜率的关系,是基础题.2、D【解析】

满足每个选项的条件时能否找到反例推翻结论即可。【详解】A:当m,n中至少有一条垂直交线才满足。B:很明显m,n还可以异面直线不平行。C:只有当m垂直交线时,否则不成立。故选:D【点睛】此题考查直线和平面位置关系,一般通过反例排除法即可解决,属于较易题目。3、A【解析】

由,对任意的实数,等式恒成立,且,得到an+1=an+2,由等差数列的定义求得结果.【详解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)•f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,则f(﹣1)•f(0)=f(﹣1),∵当x<0时,f(x)>1,∴f(﹣1)≠0,则f(0)=1,则f(an+1)f(﹣2﹣an)=1,等价为f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),则an+1﹣2﹣an=0,∴an+1﹣an=2.∴数列{an}是以1为首项,以2为公差的等差数列,首项a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故选:A【点睛】本题主要考查数列与函数的综合运用,根据抽象函数的关系结合等差数列的通项公式建立方程是解决本题的关键,属于中档题.4、C【解析】

设,得到,,,再利用举反例的方式排除③【详解】设,则:,故是首项为,公比为的等比数列,①正确,故是首项为,公比为的等比数列,②正确取,则,不是等比数列,③错误.,故是首项为,公差为的等差数列,④正确故选:C【点睛】本题考查了等差数列,等比数列的判断,找出反例可以快速的排除选项,简化运算,是解题的关键.5、B【解析】

由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.6、B【解析】

根据正弦定理,可得,进而可求,再利用余弦定理,即可得结果.【详解】,∴由正弦定理,可得3b=5a,,,,,故选:B.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2).7、D【解析】

因为,所以由于与平行,得,解得.8、D【解析】

根据平均数的定义求解.【详解】两组数的总数为:则这个数的平均数为:故选:D【点睛】本题主要考查了平均数的定义,还考查了运算求解能力,属于基础题.9、D【解析】试题分析:根据随机事件的定义:在相同条件下,可能发生也可能不发生的现象(2)是必然发生的,(3)是不可能发生的,所以不是随机事件,故选择D考点:随机事件的定义10、D【解析】

写出所有等可能事件,求出事件“至少有一个黑球”的概率为,事件“都是红球”的概率为,两事件的概率和为,从而得到两事件对立.【详解】记两个黑球为,两个红球为,则任取两球的所有等可能结果为:,记事件A为“至少有一个黑球”,事件为:“都是红球”,则,因为,所以事件与事件互为对立事件.【点睛】本题考查古典概型和对立事件的判断,利用两事件的概率和为1是判断对立事件的常用方法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由等差数列的性质可得出的值,然后利用等差数列的求和公式可求出的值.【详解】由等差数列的基本性质可得,因此,.故答案为:.【点睛】本题考查等差数列求和,同时也考查了等差数列基本性质的应用,考查计算能力,属于基础题.12、8【解析】由题意可得:则的最小值为.当且仅当时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.13、4【解析】

利用直线平行公式得到答案.【详解】直线:与直线:平行故答案为4【点睛】本题考查了直线平行的性质,属于基础题型.14、50【解析】

由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【点睛】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.15、【解析】

先求解,再求解,再利用降幂公式求解即可.【详解】由,又为第二象限角,故,且.又.故答案为:【点睛】本题主要考查了降幂公式的用法等,属于基础题型.16、【解析】

作出图形,设正方体的棱长为,取的中点,连接、,推导出,并证明出,可得出异面直线、所成的角为,并计算出、,可得出,进而得解.【详解】如下图所示,设正方体的棱长为,取的中点,连接、,为的中点,则,,且,为的中点,,,在正方体中,且,则四边形为平行四边形,,所以,异面直线、所成的角为,在中,,,.因此,异面直线、所成角的正弦值为.故答案为:.【点睛】本题考查异面直线所成角的正弦值的计算,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),乙组加工水平高.【解析】

(1)根据甲、乙两组数据的平均数都是并结合平均数公式可求出、的值;(2)利用方差公式求出甲、乙两组数据的方差,根据方差大小来对甲、乙两组技工的加工水平高低作判断.【详解】(1)由于甲组数据的平均数为,即,解得,同理,,解得;(2)甲组的个数据分别为:、、、、,由方差公式得,乙组的个数据分别为:、、、、,由方差公式得,,因此,乙组技工的技工的加工水平高.【点睛】本题考查茎叶图与平均数、方差的计算,从茎叶图中读取数据时,要注意茎的部分数字为高位,叶子部分的数字为低位,另外,这些数据一般要按照由小到大或者由大到小的顺序排列.18、(1),频率分布直方图见解析;(2).【解析】

(1)根据分布直方图计算出第二个矩形的面积,乘以可得出的值,再由频数之和为得出的值,利用频数除以样本容量得出第四个矩形的面积,并计算出第四个矩形的高,于此可补全频率分布直方图;(2)先计算出人中年龄在、内的市民人数分别为、,将年龄在的位市民记为,年龄在的位市民记为、、、,记事件恰有人的年龄在内,列举出所有的基本事件,并确定事件所包含的基本事件数,利用古典概型的概率公式可计算出事件的概率.【详解】(1)由频数分布表和频率分布直方图可知,解得.频率分布直方图中年龄在内的人数为人,对应的为,所以补全的频率分布直方图如下图所示:(2)由频数分布表知,在抽取的人中,年龄在内的市民的人数为,记为,年龄在内的市民的人数为,分别记为、、、.从这人中任取人的所有基本事件为:、、、、、、、、、,共个基本事件.记“恰有人的年龄在内”为事件,则所包含的基本事件有个:、、、,所以这人中恰有人的年龄在内的概率为.【点睛】本题考查频率分布直方图和频率分布表的应用,同时也考查了古典概型概率公式计算概率,在列举基本事件时要遵循不重不漏的基本原则,常用的是列举法,也可以利用树状图来辅助理解,考查运算求解能力,属于中等题.19、:(Ⅰ)(Ⅱ)【解析】试题分析:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1,从而得到{an}的通项公式.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1),再由=a1Sk+1,求得正整数k的值.解:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1.∴{an}的通项公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1).∵若a1,ak,Sk+1成等比数列,∴=a1Sk+1,∴4k1=1(k+1)(k+3),k="2"或k=﹣1(舍去),故k=2.考点:等比数列的性质;等差数列的通项公式.20、(1);(2).【解析】

(1)根据对数的真数大于零,得出,解出该不等式即可得出函数的定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论