【创新设计】2013-2014版高中数学同步训练(打包37套)苏教版必修1
收藏
资源目录
压缩包内文档预览:
编号:1172403
类型:共享资源
大小:2.30MB
格式:RAR
上传时间:2017-04-27
上传人:me****88
IP属地:江西
3.6
积分
- 关 键 词:
-
创新
立异
设计
高中数学
同步
训练
打包
37
苏教版
必修
- 资源描述:
-
【创新设计】2013-2014版高中数学同步训练(打包37套)苏教版必修1,创新,立异,设计,高中数学,同步,训练,打包,37,苏教版,必修
- 内容简介:
-
1 【创新设计】 2013高中数学 数奇偶性的应用同步训练 苏教版必修 1 双基达标 限时 15分钟 1设函数 f(x)(x R)为奇函数, f(1) 12, f(x 2) f(x) f(2),则 f(2) _. 解析 令 x 1,得 f(1) f( 1) f(2) f(1) f(2),所以 f(2) 2f(1) 1. 答案 1 2已知定义在 R 上的奇函数 f(x)满足 f(x 2) f(x),则 f(6)的值为 _ 解析 f(0) 0, f(6) f(4) f(2) f(0) 0. 答案 0 3已知函数 f(x)是 R 上的奇函数,则函数 F(x) ff(x)是 _函数 (填奇偶性 ) 解析 因为 f(x)是奇函数, 所以 f( x) f(x), 因为 F( x) ff( x) f f(x) ff(x), 所以 F(x)是奇函数 答案 奇 4已知 f(x)是定义域为 R 的奇函数,当 x 0 时, f(x) x 1,则当 x 0 时, f(x) _;当 x 0 时, f(x) _. 解析 因为 f(x)是定义域为 R 上的奇函数,所以 f(0) 0.当 x 0, x 0,所以 f(x) ( x)2 ( x) 1 x 1,又 f( x) f(x) x 1,所以 f(x) x 1. 答案 0 f(x) x 1 5给出下列四个说法: 反比例函数 y 2011x 在区间 ( , 0) (0, ) 上是减函数; 二次函数 y 2x 1 在区间 (0, ) 上是增函数; 偶函数与 x 轴的交点个数一定是偶数; y x 2,2)是奇函数其中错误的说法有 _(填序号 ) 解析 逐一判断 单调减区间不可以取并集,故错误; 作出图象可知正确; 如果偶函数图象经过原点,则与 x 轴上的交点个数是奇数,故错误; 因为定义域不关于原点对称,所以是非奇非偶函数,故错误 答案 6设函数 f(x)是定义在 R 上的奇函数,若当 x (0, ) 时, f(x) 3 x(1 x), (1)求 f(27)与 f( 27)的值; (2)求 f(x)的解析式 解 (1)由题意知 f( 27) f(27) 3 27(1 27) 84, 2 f(27) 84, f( 27) 84. (2) f(x)是定义在 R 上的奇函数, f(0) 0. 设 则 f( x) 3 x1 ( x) 3 x(1 x) 又 f( x) f(x), f(x) 3 x(1 x), f(x) 3 x x x00 x 03 x x x0. 综合提 高 限时 30分钟 7函数 f(x) x 1(x R),若 f(a) 2,则 f( a)的值为 _ 解析 f(x) 1 x 为奇函数,又 f(a) 2. f(a) 1 1,故 f( a) 1 1,即f( a) 0. 答案 0 8函数 y f(x)是偶函数,则在点 ( a, f(a)、 ( a, f( a)、 ( a, f(a)、(a, f( a)中,一定在函数 y f(x)图象上的点是 _ 解析 当 x a 时, y f( a) f(a),即点 ( a, f(a)一定在函数 y f(x)图象上 答案 ( a, f(a) 9给出下列结论: 偶函数的图象一定与 y 轴相交; 奇函数的图象一定过原点; 偶函数的图象若不经过原点,则它与 x 轴的交点的个数一定是偶数; 定义在 R 上的增函数一定是奇函数其中正确的是 _(填序号 ) 解析 逐一判断 错误,如函数 y 1与 y 轴不相交; 错误,如 y 1不过原点; 因为偶函数图象关于 y 轴对称,故正确; 错误,如 y x 1 是在R 上的增函数但不是奇函数 答案 10如果函数 y f(x 1)是偶函数,那么函数 y f(x)的图象关于 _对称 解析 函数 y f(x 1)是偶函数, 函数 y f(x 1)的图象关于直线 x 0 对称,又将函数 y f(x 1)的图象向右平移 1 个单位,得到函数 y f(x)的图象, 函数 y f(x)的图象关于直线 x 1 对称 答案 x 1 3 11定义在 R 上的函数 f(x)满足 f( xf(y) yf(x),判断 f(x)的奇偶性,并说明理由 解 f(x)是奇函数理由如下: 令 x y 1,得 f(1) 2f(1),所以 f(1) 0. 令 x y 1,得 f(1) 2f( 1),所以 f( 1) 0, 所以 f( x) f( 1 x) f(x) 1) f(x), 所以 f(x)是奇函数 12 (1)已知 f(x) 23x f(2)53.(1)求实数 p, q 的值; (2)判断函数 f(x)在 ( , 1)上的单调性,并且加以证明 解 (1) f(x) 23x 定义域关于原点对称, q 0, f(x)23x ,又 f(2) 53, 4p 26 53,解得 p 2. (2)f(x) 223x ,任取 1,则 f( f( 223223 1, 0,1 0, 0, f( f( 0,即 f( f( 函数 f(x)在 ( , 1)上是单调增函数 13 (创新拓展 )y f(x)是定义在 R 上的奇函数,且当 x0 时, f(x) 2x (1)求 x 0 时, f(x)的解析式; (2)问是否存在这样的正数 a, b,当 x a, b时, g(x) f(x),且 g(x)的值域为 1b,1a?若存在,求出所有的 a, b 值;若不存在,请说明理由 解 (1)设 x 0,则 x 0 于是 f( x) 2x f(x)为奇函数,所以 f(x) f( x) 2x 即 x 0 时, f(x) 2x x2(x 0); (2)分下述三种情况: 0 a b1 ,那么 1a 1,而当 x0 , f(x)的最大值为 1,故此时不可能使 g(x) f(x); 若 0 a 1 b,此时若 g(x) f(x),则 g(x)的最大值为 g(1) f(1) 1,得 a 1,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。