2022版高中数学一轮复习课时作业梯级练五十四曲线与方程课时作业理含解析新人教A版202104081207.doc
2022版高中数学一轮复习课时作业梯级练理含解析打包77套新人教A版
收藏
资源目录
压缩包内文档预览:
编号:157465666
类型:共享资源
大小:16.53MB
格式:ZIP
上传时间:2021-10-23
上传人:扣***
认证信息
机构认证
宁夏凯米世纪网络科技有限公司
宁夏
统一社会信用代码/组织机构代码
91640100MA774ECW4K
IP属地:宁夏
18
积分
- 关 键 词:
-
2022
高中数学
一轮
复习
课时
作业
梯级
练理含
解析
打包
77
新人
- 资源描述:
-
2022版高中数学一轮复习课时作业梯级练理含解析打包77套新人教a版,2022,高中数学,一轮,复习,课时,作业,梯级,练理含,解析,打包,77,新人
- 内容简介:
-
课时作业梯级练五十四曲线与方程一、选择题(每小题5分,共35分)1如图,已知线段ab垂直于定圆所在的平面,b,c是圆上的两点,h是点b在ac上的射影,当c运动时,点h运动的轨迹是()a圆 b椭圆c抛物线 d直线【解析】选a.如图,过点b作圆的直径bd,连接cd,ad,再过点b作bead于e,连接he,因为ab平面bcd,所以abcd.又由bd为圆的直径得bccd,且abbcb,所以cd平面abc,所以cdbh.又bhac,且accdc,所以bh平面acd,所以bhad,bhhe.所以当点c运动时,点h运动的轨迹是以be为直径的圆2曲线:x22xyy21的图象()a关于x轴对称b关于原点对称,但不关于直线yx对称c关于y轴对称d关于直线yx对称,关于直线yx对称【解析】选d.a.f x22xyy21f ,所以不关于x轴对称;bf x22xyy21f ,f y22xyx21f ,所以关于原点对称,也关于直线yx对称;cf x22xyy21f ,所以不关于y轴对称;df y22xyx21f ,所以关于直线yx对称,同时也关于直线yx对称3在平面内,a,b是两个定点,c是动点,若1,则点c的轨迹为()a圆 b椭圆c抛物线 d直线【解析】选a.设ab2a,以ab中点为坐标原点建立如图所示的平面直角坐标系,则a,b,设c,可得:=,=,从而=+y2,结合题意可得:+y2=1,整理可得:x2+y2=a2+1,即点c的轨迹是以ab中点为圆心,为半径的圆.4已知点f(0,1),直线l:y1,p为平面上的动点,过点p作直线l的垂线,垂足为q,且=,则动点p的轨迹c的方程为()ax24y by23xcx22y dy24x【解析】选a.设点p(x,y),则q(x,1).因为=,所以(0,y1)(x,2)(x,y1)(x,2),即2(y1)x22(y1),整理得x24y,所以动点p的轨迹c的方程为x24y.5方程|y|1表示的曲线是()a一个椭圆 b一个圆c两个圆 d两个半圆【解析】选d.当y0时,(x1)2(y1)21且y1,表示一个半圆;当y0时,(x1)2(y1)21且y1,表示一个半圆6关于方程x0与x2(x2y24)20表示的曲线,下列说法正确的是()a都表示一条直线和一个圆b都表示两个点c前者是两个点,后者是一条直线和一个圆d前者是一条直线和一个圆,后者是两个点【解析】选d.因为x0化简为x0或x2y24,所以表示直线和圆;因为x220化简得所以表示两个点7在平面直角坐标系中,曲线c是由到两个定点a(1,0)和点b(1,0)的距离之积等于的所有点组成的对于曲线c,有下列3个结论:曲线c是轴对称图形;曲线c是中心对称图形;曲线c上所有的点都在单位圆x2y21内,其中,所有正确结论的序号是()a bc d【解析】选a.由题意,设动点坐标为(x,y),利用题意及两点间的距离公式得:,对于,分别将方程中的x被x代换y不变,y被y代换x不变,方程都不变,故此曲线关于y轴对称和x轴对称,即曲线c是轴对称图形,故正确;对于,把方程中的x被x代换且y被y代换,方程不变,故此曲线关于原点对称,即曲线c是中心对称图形,故正确;对于,令y0可得,即x211,此时对应的点不在单位圆x2y21内,故错误二、填空题(每小题5分,共15分)8已知平面内两个定点m(3,0)和n(3,0),p是动点,且直线pm,pn的斜率乘积为常数a(a0),设点p的轨迹为c. 存在常数a(a0),使c上所有点到两点(4,0),(4,0)距离之和为定值; 存在常数a(a0),使c上所有点到两点(0,4),(0,4)距离之和为定值; 存在常数a(a0),使c上所有点到两点(4,0),(4,0)距离差的绝对值为定值; 存在常数a(a0),使c上所有点到两点(0,4),(0,4)距离差的绝对值为定值其中正确的是_(填出所有正确的序号)【解析】设点p的坐标为p(x,y),依题意,有:a,整理,得1,对于,点的轨迹为焦点在x轴上的椭圆,且c4,a0,椭圆在x轴上两顶点的距离为26,两焦点的距离为248,不符合题意;对于,点的轨迹为焦点在y轴上的椭圆,且c4,椭圆方程为1,则9a916,解得:a,符合题意;对于,当a时,1,所以,存在满足题意的实数a,符合题意;对于,点的轨迹为焦点在y轴上的双曲线,即1,不可能成为焦点在y轴上的双曲线,所以,不存在满足题意的实数a,不符合题意答案:9已知点a的坐标为(2,0),圆c的方程为x2y24,动点p在圆c上运动,点m为ap延长线上一点,且|ap|pm|.则点m的轨迹方程为_【解析】设m(x,y),已知点a的坐标为(2,0),动点p在圆c上运动,点m为ap延长线上一点,且|ap|pm|,则点p为am的中点,所以得p,代入圆c的方程x2y24,得(x2)2y216.答案:(x2)2y21610已知两个定点a(0,4),b(0,1),动点p满足|pa|2|pb|,则动点p的轨迹方程为_【解析】由题意,设点p的坐标为(x,y),因为|pa|2|pb|,即2,整理得x2y24,所以动点p的轨迹方程为x2y24.答案:x2y241数学中有许多形状优美,寓意美好的曲线,曲线c:x2y21|x|y就是其中之一(如图).给出下列三个结论:曲线c恰好经过6个整点(即横、纵坐标均为整数的点);曲线c上存在到原点的距离超过的点;曲线c所围成的“心形”区域的面积小于3.其中所有正确结论的个数是()a0 b1 c2 d3【解析】选b.将x换成x方程不变,所以图形关于y轴对称,当x0时,代入可得y21,所以y1,即曲线经过,;当x0时,方程变为y2xyx210,所以x240,解得x,所以x只能取整数1,当x1时,y2y0,解得y0或y1,即曲线经过,根据对称性可得曲线经过,所以曲线一共经过6个整点,故正确;当x0时,由x2y21xy可得x2y21xy(当xy时取等号),所以x2y22,所以,即曲线c上y轴右边的点到原点的距离不超过,根据对称性可得:曲线c上任意一点到原点的距离都不超过,故错误;在x轴上方图形面积大于矩形的面积122,在x轴下方图形面积大于等腰三角形的面积211,因此曲线c所围成的“心形”区域的面积大于213,故错误2曲线c是平面内到定点f和定直线l:x的距离之和等于5的点的轨迹,给出下列三个结论:曲线c关于y轴对称;若点p(x,y)在曲线c上,则y满足|y|4;若点p(x,y)在曲线c上,则1|pf|5.其中,正确结论的序号是_【解析】设动点m(x,y)是曲线c上任意一点,则|mf|5,即5,当x时,5x,整理得xy2,当x时,5x,整理得xy2,作出曲线c的图象,如图,显然不正确;曲线c不关于y轴对称;当x时,可得y4,所以当点p(x,y)在曲线c上时,y满足|y|4成立,即正确;令y0,可得x,所以当点p(x,y)在曲线c上时,x满足|x|,且04,又|pf|5,所以|pf|5,1|pf|5,即正确答案:3数学中有许多寓意美好的曲线,曲线c:(x2y2)34x2y2被称为“四叶玫瑰线”(如图所示).给出下列三个结论:曲线c关于直线yx对称;曲线c上任意一点到原点的距离都不超过1;存在一个以原点为中心、边长为的正方形,使得曲线c在此正方形区域内(含边界).其中,正确结论的序号是_【解析】对于,将(y,x)代入c:(x2y2)34x2y2得(y2x2)34y2x2成立,所以曲线c关于直线yx对称,故正确;对于,因为x2y2,所以x2y21,所以1,所以曲线c上任意一点到原点的距离都不超过1,故正确;对于,联立得x2y2,从而可得四个交点a,b,c,d,依题意满足条件的最小正方形是各边以a,b,c,d为中点,边长为2的正方形,所以不存在一个以原点为中心、边长为的正方形,使得曲线c在此正方形区域内(含边界),故不正确答案:4已知方程k2x2(k22k2)y2k.(1)当k为何值时,方程表示直线?(2)当k为何值时,方程表示圆?(3)
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
2:不支持迅雷下载,请使用浏览器下载
3:不支持QQ浏览器下载,请用其他浏览器
4:下载后的文档和图纸-无水印
5:文档经过压缩,下载后原文更清晰
|