2013高考数学总复习 考点专练 文(打包35套) 新人教A版
收藏
资源目录
压缩包内文档预览:
编号:1183902
类型:共享资源
大小:2.15MB
格式:RAR
上传时间:2017-04-30
上传人:me****88
IP属地:江西
3.6
积分
- 关 键 词:
-
高考
数学
复习
温习
考点
打包
35
新人
- 资源描述:
-
2013高考数学总复习 考点专练 文(打包35套) 新人教A版,高考,数学,复习,温习,考点,打包,35,新人
- 内容简介:
-
- 1 - 考点专练 (五十九 ) 一、选择题 1若 a, b R,则下面四个式子中恒成立的是 ( ) A 0 B ( a b 1) C 3 c,且 a b c 0,求证 B a c0 C (a b)(a c)0 D (a b)(a c)b 与 a 2, b 1c 2, c 1a 2, 将三式相加,得 a 1b b 1c c 1a 6, 又因为 a 1a 2, b 1b 2, c 1c 2, 三式相加,得 a 1b b 1c c 1a 6, 所以假设不成立 答案: C 6已知 顶点 A(x, y), B( 1,0), C(1,0),若 足的条件分别是: (1)周长是 6; (2) A 90 ; (3)1; (4) A 的轨迹方程: (a)1(y0) , (b)1(y0) , (c)1(y0) , (d)y 1(y0) 其中与条件 (1)(2)(3)(4)分别对应的轨迹方程的代码依次是 ( ) A (a)(b)(c)(d) B (c)(a)(d)(b) C (d)(a)(b)(c) D (c)(a)(b)(d) 解析: 由 周长是 6, | 2,可知点 A 位于以 B, C 为焦点的椭圆上, y0 ,与(c)相对应;由 A 90 ,可知 点 A 位于以 B, C 为端点的圆 1(y0) 上;由 1,化简得 1(y0) ;显然 (4)与 (d)相对应 答案: D 二、填空题 7若记号 “ ” 表示求两个实数 a 和 b 的算术平均数的运算,即 a b a 则两边均含有运算符号 “ ” 和 “ ” ,且对于任意 3 个实数 a, b, c 都能成立一个等式可以是_ 解析: a b a b a b a b c b a c. - 3 - 答案: a b c b a c. 8如 果 a a b ba b b a,则 a、 b 应满足的条件是 _ 解析: a a b ba b b a( a b)2( a b)0a0 , b0 且 a b. 答案: a0 , b0 且 a b 9 (1)由 “ 若 a, b, c R,则 (ab)c a( 类比 “ 若 a, b, c 为三个向量,则 (a b) c a( b c)” ; (2)在数列 , 0, 1 22,猜想, 2n 2; (3)在平面内 “ 三角形的两边之和大于第三边 ” 类比在空间中 “ 四面体的任意三个面的面积之和大于第四个面的面积 ” ; (4)若 f(x) 22 f 4 2 1. 上述四个推理中,得出的结论正确的是 _ (写出所有正确结论的序号 ) 解析: 向量的乘法不满足结合律,故 (1)不正确; f(x) 222 2x 4 1, 故 f 4 2 2 4 1 2,故 (4)不正确 答案: (2)(3) 三、解答题 10 (2012 年东北三校 4 月模拟 )已知函数 f(x) x), g(x) a 1213数 y f(x)与函数 y g(x)的图象在交点 (0,0)处有公共切线 (1)求 a, b; (2)证明: f(x) g(x) 解: (1)f( x) 11 x, g( x) b x 由题意得 g f ,f g , 解得 a 0, b 1. (2)证明:令 h(x) f(x) g(x) ln(x 1) 1312x(x 1) h( x) 1x 1 x 1 1. h(x)在 ( 1,0)上为增函数,在 (0, ) 上为减函数 h(x)h(0) 0, h(x) h(0) 0,即 f(x) g(x) 11已知函数 y x 2x 1(a1) (1)证明:函数 f(x)在 ( 1, ) 上为增函数 (2)用反证法证明方程 f(x) 0 没有负数根 - 4 - 证明: (1)y 3x 1 2. a1, , .又 x 1, 3x 20, y0 , 函数 f(x)在 ( 1, ) 上为增函数 (2)假设方程 f(x) 0有负数根,即存在 成立, 式与 式矛盾, 若 11, 313, 1 312. 而当 11,不 等式 1 12 13 1n 112 都成立 解: (1)由题设可知 f( x) 2x 1 1x a. 当 x 0 时, f(x)取得极值 0, f 0,f 0, 解得 a 1, b 0, 经检验 a 1, b 0 符合题意 (2)由 (1)知 f(x) x ln(x 1), 则方程 f(x) 52x m 即为 ln(x 1) 32x m 0, 令 (x) ln(x 1) 32x m, 则方程 (x) 0 在区间 0,2上恰有两个不同的实数根 ( x) 2x 1x 1 32 x xx , 当 x (0,1)时, ( x)0,于是 (x)在 (1,2)上单调递增 - 6 - 依题意有 m0 , 12 f(x)单调递增 f(0)为 f(x)在 ( 1, ) 上的最小值, f(x) f(0),而 f(0) 0, 故 xx 1),其中当 x 0 时等号成立 对任意正整数 n(n1),取 x 1n0,得 11n 1n 1 ln(n 1
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。